Determination of Navion stability and control derivatives using frequency-domain techniques

1999 ◽  
Author(s):  
William Lewis ◽  
R. Catterall
1976 ◽  
Vol 98 (2) ◽  
pp. 139-145 ◽  
Author(s):  
N. K. Gupta ◽  
R. K. Mehra ◽  
W. E. Hall

This paper considers an application of the Frequency Domain Input Synthesis procedure reference [12] for identifying the stability and control derivatives of an aircraft. In previous studies, the input design has mostly been carried out in the time-domain. However, by using a frequency-domain approach, one can handle criteria that are not easily handled by the time-domain approaches. Numerical results are presented for optimal elevator deflections to estimate the longitudinal stability and control derivatives subject to root-mean square constraints on the input. The applicability of the steady state optimal inputs to finite duration flight testing is investigated. It is shown that the steady state approximation of frequency-domain synthesis is good for data lengths greater than two time cycles for the short period mode of the aircraft longitudinal motions. For data lengths shorter than this, the phase relationships between different frequency components becomes important. The frequency domain inputs are shown to be much better than the conventional doublet inputs.


Author(s):  
Dheeraj Agarwal ◽  
Linghai Lu ◽  
Gareth D. Padfield ◽  
Mark D. White ◽  
Neil Cameron

High-fidelity rotorcraft flight simulation relies on the availability of a quality flight model that further demands a good level of understanding of the complexities arising from aerodynamic couplings and interference effects. One such example is the difficulty in the prediction of the characteristics of the rotorcraft lateral-directional oscillation (LDO) mode in simulation. Achieving an acceptable level of the damping of this mode is a design challenge requiring simulation models with sufficient fidelity that reveal sources of destabilizing effects. This paper is focused on using System Identification to highlight such fidelity issues using Liverpool's FLIGHTLAB Bell 412 simulation model and in-flight LDO measurements from the bare airframe National Research Council's (Canada) Advanced Systems Research Aircraft. The simulation model was renovated to improve the fidelity of the model. The results show a close match between the identified models and flight test for the LDO mode frequency and damping. Comparison of identified stability and control derivatives with those predicted by the simulation model highlight areas of good and poor fidelity.


Author(s):  
Bruno Mialon ◽  
Saloua Ben Khelil ◽  
Andreas Huebner ◽  
Jean-Christophe Jouhaud ◽  
Gilbert Rogé ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document