Two-photon excited endogenous fluorescence for label-free in vivo imaging ingestion of disease-causing bacteria by human leukocytes

2013 ◽  
Author(s):  
Yan Zeng ◽  
Bo Yan ◽  
Qiqi Sun ◽  
Seng Khoon Teh ◽  
Wei Zhang ◽  
...  
2016 ◽  
Vol 54 (12) ◽  
pp. 1343-1404
Author(s):  
A Ghallab ◽  
R Reif ◽  
R Hassan ◽  
AS Seddek ◽  
JG Hengstler

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7744
Author(s):  
Ye Tian ◽  
Ming Wei ◽  
Lijun Wang ◽  
Yuankai Hong ◽  
Dan Luo ◽  
...  

Due to the unique advantages of two-photon technology and time-resolved imaging technology in the biomedical field, attention has been paid to them. Gold clusters possess excellent physicochemical properties and low biotoxicity, which make them greatly advantageous in biological imaging, especially for in vivo animal imaging. A gold nanocluster was coupled with dihydrolipoic acid to obtain a functionalized nanoprobe; the material displayed significant features, including a large two-photon absorption cross-section (up to 1.59 × 105 GM) and prolonged fluorescence lifetime (>300 ns). The two-photon and time-resolution techniques were used to perform cell imaging and in vivo imaging.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Markus Seeger ◽  
Christoph Dehner ◽  
Dominik Jüstel ◽  
Vasilis Ntziachristos

AbstractThe non-invasive investigation of multiple biological processes remains a methodological challenge as it requires capturing different contrast mechanisms, usually not available with any single modality. Intravital microscopy has played a key role in dynamically studying biological morphology and function, but it is generally limited to resolving a small number of contrasts, typically generated by the use of transgenic labels, disturbing the biological system. We introduce concurrent 5-modal microscopy (Co5M), illustrating a new concept for label-free in vivo observations by simultaneously capturing optoacoustic, two-photon excitation fluorescence, second and third harmonic generation, and brightfield contrast. We apply Co5M to non-invasively visualize multiple wound healing biomarkers and quantitatively monitor a number of processes and features, including longitudinal changes in wound shape, microvascular and collagen density, vessel size and fractality, and the plasticity of sebaceous glands. Analysis of these parameters offers unique insights into the interplay of wound closure, vasodilation, angiogenesis, skin contracture, and epithelial reformation in space and time, inaccessible by other methods. Co5M challenges the conventional concept of biological observation by yielding multiple simultaneous parameters of pathophysiological processes in a label-free mode.


2019 ◽  
Vol 89 ◽  
pp. 103019 ◽  
Author(s):  
Seo Hyeon Lee ◽  
Young Ho Choe ◽  
Rae Hyung Kang ◽  
Yu Rim Kim ◽  
Na Hee Kim ◽  
...  

2015 ◽  
Vol 6 (9) ◽  
pp. 3303 ◽  
Author(s):  
Seoyeon Bok ◽  
Taejun Wang ◽  
Chan-Ju Lee ◽  
Seong-Uk Jeon ◽  
Young-Eun Kim ◽  
...  

2020 ◽  
Vol 45 (10) ◽  
pp. 2704
Author(s):  
Ting Wu ◽  
Jiuling Liao ◽  
Jia Yu ◽  
Yufeng Gao ◽  
Hui Li ◽  
...  

2007 ◽  
Vol 48 (15) ◽  
pp. 2791-2795 ◽  
Author(s):  
Hwan Myung Kim ◽  
Xing Zhong Fang ◽  
Pil Rye Yang ◽  
Jae-Sung Yi ◽  
Young-Gyu Ko ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document