Registration accuracy improvement of fiducial mark on EUVL mask with MIRAI EUV ABI prototype

Author(s):  
Tetsunori Murachi ◽  
Tsuyoshi Amano
2020 ◽  
Vol 140 (11) ◽  
pp. 1264-1269
Author(s):  
Tatsuya Ohba ◽  
Daisuke Mizushima ◽  
Keishiro Goshima ◽  
Norio Tsuda ◽  
Jun Yamada

2014 ◽  
Vol 134 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Hisatomo Miyata ◽  
Kazutoshi Miyashita ◽  
Takayuki Endo ◽  
Yuichi Shimasaki ◽  
Tatsuya Iizaka ◽  
...  

Author(s):  
Jiayong Yu ◽  
Longchen Ma ◽  
Maoyi Tian, ◽  
Xiushan Lu

The unmanned aerial vehicle (UAV)-mounted mobile LiDAR system (ULS) is widely used for geomatics owing to its efficient data acquisition and convenient operation. However, due to limited carrying capacity of a UAV, sensors integrated in the ULS should be small and lightweight, which results in decrease in the density of the collected scanning points. This affects registration between image data and point cloud data. To address this issue, the authors propose a method for registering and fusing ULS sequence images and laser point clouds, wherein they convert the problem of registering point cloud data and image data into a problem of matching feature points between the two images. First, a point cloud is selected to produce an intensity image. Subsequently, the corresponding feature points of the intensity image and the optical image are matched, and exterior orientation parameters are solved using a collinear equation based on image position and orientation. Finally, the sequence images are fused with the laser point cloud, based on the Global Navigation Satellite System (GNSS) time index of the optical image, to generate a true color point cloud. The experimental results show the higher registration accuracy and fusion speed of the proposed method, thereby demonstrating its accuracy and effectiveness.


Author(s):  
Franco Stellari ◽  
Peilin Song

Abstract In this paper, the development of advanced emission data analysis methodologies for IC debugging and characterization is discussed. Techniques for automated layout to emission registration and data segmentations are proposed and demonstrated using both 22 nm and 14 nm SOI test chips. In particular, gate level registration accuracy is leveraged to compare the emission of different types of gates and quickly create variability maps automatically.


Sign in / Sign up

Export Citation Format

Share Document