Large-area laser scanner with holographic detector optics for real-time recognition of cracks in road surfaces

1995 ◽  
Vol 34 (7) ◽  
pp. 2017 ◽  
Author(s):  
Max Monti
Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4406 ◽  
Author(s):  
Rafael Sola-Guirado ◽  
Sergio Bayano-Tejero ◽  
Antonio Rodríguez-Lizana ◽  
Jesús Gil-Ribes ◽  
Antonio Miranda-Fuentes

Canopy characterization has become important when trying to optimize any kind of agricultural operation in high-growing crops, such as olive. Many sensors and techniques have reported satisfactory results in these approaches and in this work a 2D laser scanner was explored for measuring canopy trees in real-time conditions. The sensor was tested in both laboratory and field conditions to check its accuracy, its cone width, and its ability to characterize olive canopies in situ. The sensor was mounted on a mast and tested in laboratory conditions to check: (i) its accuracy at different measurement distances; (ii) its measurement cone width with different reflectivity targets; and (iii) the influence of the target’s density on its accuracy. The field tests involved both isolated and hedgerow orchards, in which the measurements were taken manually and with the sensor. The canopy volume was estimated with a methodology consisting of revolving or extruding the canopy contour. The sensor showed high accuracy in the laboratory test, except for the measurements performed at 1.0 m distance, with 60 mm error (6%). Otherwise, error remained below 20 mm (1% relative error). The cone width depended on the target reflectivity. The accuracy decreased with the target density.


2005 ◽  
Author(s):  
Olivier Tousignant ◽  
Yves Demers ◽  
Luc Laperriere ◽  
Habib Mani ◽  
Philippe Gauthier ◽  
...  

2019 ◽  
Vol 48 (10) ◽  
pp. 1010001
Author(s):  
唐峰 TANG Feng ◽  
刘顺桂 LIU Shun-gui ◽  
吕启深 L Qi-shen ◽  
李新田 LI Xin-tian ◽  
赫树开 HE Shu-kai ◽  
...  

2013 ◽  
Vol 53 (A) ◽  
pp. 807-810
Author(s):  
I. I. Yashin ◽  
N. V. Ampilogov ◽  
I.I. Astapov ◽  
N.S. Barbashina ◽  
V.V. Borog ◽  
...  

Muon diagnostics is a technique for remote monitoring of active processes in the heliosphere and the magnetosphere of the Earth based on the analysis of angular variations of muon flux simultaneously detected from all directions of the upper hemisphere. To carry out muon diagnostics, special detectors – muon hodoscopes – which can detect muons from any direction with good angular resolution in real-time mode are required. We discuss approaches to data analysis and the results of studies of various extra-terrestrial processes detected by means of the wide aperture URAGAN muon hodoscope.


2013 ◽  
Vol 405-408 ◽  
pp. 3032-3036
Author(s):  
Yi Bo Sun ◽  
Xin Qi Zheng ◽  
Zong Ren Jia ◽  
Gang Ai

At present, most of the commercial 3D laser scanning measurement systems do work for a large area and a big scene, but few shows their advantage in the small area or small scene. In order to solve this shortage, we design a light-small mobile 3D laser scanning system, which integrates GPS, INS, laser scanner and digital camera and other sensors, to generate the Point Cloud data of the target through data filtering and fusion. This system can be mounted on airborne or terrestrial small mobile platform and enables to achieve the goal of getting Point Cloud data rapidly and reconstructing the real 3D model. Compared to the existing mobile 3D laser scanning system, the system we designed has high precision but lower cost, smaller hardware and more flexible.


2013 ◽  
pp. 159-174 ◽  
Author(s):  
D. Lo Presti ◽  
D. L. Bonanno ◽  
F. Longhitano ◽  
C. Pugliatti ◽  
S. Aiello ◽  
...  

2014 ◽  
Vol 592-594 ◽  
pp. 2215-2219
Author(s):  
D. Elayaraja ◽  
R. Ramesh ◽  
S. Ramabalan

It is proposed to determine the velocity of the embedded mobile robot in a real world test environment .The test environment considered in this work is the man-made road surfaces like cement road surface, sand road surface, Bituminous Thar road surface, Grass road surface and loose gravel road surfaces etc. First, fuzzy logic control of velocity estimation a mobile robot is done using Matlab for the different surfaces. Then the real time tests on the different surfaces were carried out. The simulated values are compared with the test values. The comparison showed that the simulation values were close to the real time test values.


Author(s):  
J. Palacin ◽  
J.A. Salse ◽  
R. Sanz ◽  
M. Ribes-Dasi ◽  
J. Masip ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document