Electrorheological fluid damper for seismic protection of structures

Author(s):  
Nicos Makris ◽  
Davide Hill ◽  
Scott Burton ◽  
Mabel Jordan
2003 ◽  
Vol 33 (1/2/3) ◽  
pp. 17 ◽  
Author(s):  
S.R. Hong ◽  
S.B. Choi ◽  
Y.T Choi ◽  
N.M. Wereley

Author(s):  
Santosh R. Patil ◽  
S. Krishna ◽  
S. S. Gawade ◽  
R. G. Desavale

Abstract In this paper, a detailed analysis of a recoil system of an artillery gun has been carried out with a view to minimize recoil length by absorbing the thrust produced due to firing and bring the gun barrel to its original position for the next round of fire. In many structural and defense applications, minimization of recoil length is one of the major concerns. A lot of research work has been carried out on the recoil mechanism of an artillery gun to improve its mobility in the hilly region. The effect of recoil mass displacement and high fire rate to improve the overall efficiency of an artillery gun has been studied. In this work, the performance of an artillery gun recoil system is studied by using a damper with electrorheological (ER) fluid. Experimental and numerical studies are carried out to evaluate the performance of the recoil system in terms of recoil length and total recoil time at different elevation angles of firing, ranging from 0 to 80°. It is seen that the use of developed ER damper in the gun recoil system improves its dynamic performance.


Author(s):  
Jianjun Li ◽  
Dewen Jin ◽  
Xiaoning Zhang ◽  
Jichuan Zhang ◽  
W.A. Gruver

Sign in / Sign up

Export Citation Format

Share Document