Hydraulic pressure energy harvester enhanced by Helmholtz resonator

2015 ◽  
Author(s):  
Ellen Skow ◽  
Zachary Koontz ◽  
Kenneth Cunefare ◽  
Alper Erturk
2019 ◽  
Vol 3 (2) ◽  
pp. 50
Author(s):  
Hedwigis Harindra ◽  
Agung Bambang Setio Utomo ◽  
Ikhsan Setiawan

<span>Acoustic energy harvesting is one o</span><span lang="EN-US">f</span><span> many ways to harness </span><span lang="EN-US">acoustic </span><span>noises as wasted energy into use</span><span lang="EN-US">f</span><span>ul </span><span lang="EN-US">electical </span><span>energy using an acoustic </span><span>energy harvester. </span><span>Acoustic </span><span>energy harvester t</span><span lang="EN-US">h</span><span>at tested by Dimastya (2018) </span><span lang="EN-US">which is consisted of loudspeake</span><span>r </span><span lang="EN-US">and Helmholtz resonator, </span><span>produced two-peak spectrum. It is </span><span lang="EN-US">suspected</span><span> that the </span><span lang="EN-US">f</span><span>irst peak </span><span lang="EN-US">is due t</span><span>o </span><span lang="EN-US">Helmholtz</span><span> resonator resonance and the second peak </span><span lang="EN-US">comes</span><span lang="EN-US">from the resonance of the conversion </span><span>loudspeaker. </span><span lang="EN-US">This research is to experimentally confirm the guess of the origin of the first peak. The experiments are performed by adding silencer materials on the resonator inner wall which are expected to be able to reduce the height of first peak and to know </span><span>how </span><span lang="EN-US">they</span><span> a</span><span lang="EN-US">ff</span><span>ect t</span><span>he output electric power spectrum o</span><span lang="EN-US">f</span><span> t</span><span>he acoustic energy harvester. </span><span lang="EN-US">Three different silencer materials are used, those are</span><span> glasswool, acoustic </span><span lang="EN-US">f</span><span>oam, and styro</span><span lang="EN-US">f</span><span>oam</span><span lang="EN-US">,</span><span> with</span><span lang="EN-US"> the same thickness of</span><span> 12 cm. </span><span lang="EN-US">The r</span><span>esult</span><span lang="EN-US">s</span><span> show that glasswool absorb</span><span lang="EN-US">s</span><span> sound more e</span><span lang="EN-US">ff</span><span>ectively than acostic </span><span lang="EN-US">f</span><span>oam and styro</span><span lang="EN-US">f</span><span>oam. The use o</span><span lang="EN-US">f</span><span> glasswool, acoustic </span><span lang="EN-US">f</span><span>oam, and styro</span><span lang="EN-US">f</span><span>oam with 12 cm thickness lowered the </span><span lang="EN-US">f</span><span>irst peak </span><span lang="EN-US">by</span><span> 90% (</span><span lang="EN-US">f</span><span>rom 39 mW to 0,5 mW), 82% (</span><span lang="EN-US">f</span><span>rom 39 mW to 0,7 mW), and 82% (</span><span lang="EN-US">f</span><span>rom 39 mW to 0,7 mW), respectively. </span><span lang="EN-US">Based on these results, it is concluded that the guess of the origin of the first peak is confirmed.</span>


Author(s):  
Nalin Verma ◽  
Kenneth A. Cunefare ◽  
Ellen Skow ◽  
Alper Erturk

A hydraulic pressure energy harvester (HPEH) device, which utilizes a housing to isolate a piezoelectric stack from the hydraulic fluid via a mechanical interface, generates power by converting the dynamic pressure within the system into electricity. Prior work developed an HPEH device capable of generating 2187 microWatts from an 85 kPa pressure ripple amplitude using a 1387 mm3 stack. A new generation of HPEH produced 157 microWatts at the test conditions of 18 MPa static pressure and 394 kPa root-mean-square pressure amplitude using a 50 mm3 stack, thus increasing the power produced per volume of piezoelectric stack principally due to the higher dynamic pressure input. The stack and housing design implemented on this new prototype device yield a compact, high-pressure hydraulic pressure energy harvester designed to withstand 35 MPa. The device, which is less than a 2.54 cm in length as compared to a 5.3 cm length of a previous HPEH, was statically tested up to 21.9 MPa and dynamically tested up to 19 MPa with 400 kPa root-mean-square dynamic pressure amplitude. An inductor was included in the load circuit in parallel with the stack and the load resistance to increase the power output of the device. A previously developed electromechanical power output model for this device that predicts the power output given the dynamic pressure ripple amplitude is compared to the power results. The power extracted from this device would be sufficient to meet the proposed applications of the device, which is to power sensor nodes in hydraulic systems.


2021 ◽  
Vol 119 (25) ◽  
pp. 253903
Author(s):  
Xiaobin Cui ◽  
Jinjie Shi ◽  
Xiaozhou Liu ◽  
Yun Lai

Sensor Review ◽  
2018 ◽  
Vol 38 (3) ◽  
pp. 298-310 ◽  
Author(s):  
Izhar ◽  
Farid Ullah Khan

Purpose The purpose of this paper is to develop a novel electromagnetic-based acoustic energy harvester (EH) for the application of wireless autonomous sensors. Design/methodology/approach The developed acoustic EH comprises a Helmholtz resonator (HR), a suspension system that consists of a flexible membrane and a permanent magnet, a couple of coils and a coil holder. Furthermore, the HR, used in the harvester, is designed for a specific resonant frequency based on simulation carried out in COMSOL Multiphysics®. Findings The developed harvester is tested both in lab under harmonic sound pressure levels (SPLs) and in real environment under random SPLs. In lab, when exposed to 100 dB SPL, the harvester generated a peak power of 212 µW. Furthermore, in real environment in vicinity of electric generator, the harvester produced an output voltage of about 110 mV collectively from its both coils. Originality/value In this paper, a novel geometric configuration for electromagnetic-based acoustic EH is proposed. In the developed harvester, two coils are placed in it to achieve enhanced electrical output from it for the first time.


2013 ◽  
Vol 476 ◽  
pp. 012003 ◽  
Author(s):  
Tomohiro Matsuda ◽  
Kazuki Tomii ◽  
Saori Hagiwara ◽  
Shuntaro Miyake ◽  
Yuichi Hasegawa ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Tian-Chen Yuan ◽  
Fei Chen ◽  
Jian Yang ◽  
Rui-Gang Song ◽  
Yong Kong

To harvest acoustic energy from urban railways, a novel and practical acoustic energy harvester is developed. The harvester consists of a piezoelectric circular plate and a Helmholtz resonator. Based on the field test data of urban railways, the resonance frequencies of the piezoelectric circular plate and the Helmholtz resonator are near 800 Hz. The Helmholtz resonator is designed to amplify the sound pressure. Thus, a lumped parameter model is established. The piezoelectric circular plate is used to convert mechanical energy into electrical energy. The simulation results show that the output power of the harvester is approximately 25 μW and the maximum voltage is 0.149 V under the excitation of urban railway noise. The experiment device is also developed. The maximum output power of the harvester is 8.452 μW, and the maximum voltage is 0.082 V. The experimental and the numerical results are in good agreement and demonstrate the effectiveness of the proposed acoustic energy harvester.


Sign in / Sign up

Export Citation Format

Share Document