scholarly journals The PSIG procedure to Persistent Scatterer Interferometry (PSI) using X-band and C-band Sentinel-1 data

2015 ◽  
Author(s):  
María Cuevas-González ◽  
Núria Devanthéry ◽  
Michele Crosetto ◽  
Oriol Monserrat ◽  
Bruno Crippa

Author(s):  
Michele Crosetto ◽  
Oriol Monserrat ◽  
María Cuevas-González ◽  
Núria Devanthéry ◽  
Guido Luzi ◽  
...  


2021 ◽  
Vol 13 (3) ◽  
pp. 407
Author(s):  
Fereshteh Tarighat ◽  
Fatemeh Foroughnia ◽  
Daniele Perissin

The Tehran basin has been increasingly affected by subsidence during the last few decades due to groundwater withdrawal. Hence, the study of the strength of the power towers (PTs) of transmission lines, as vital structures, is an important subject. In this paper, the persistent scatterer interferometry (PSI) method was applied on data stacks from two satellites (i.e., X-band COSMO-SkyMed (CSK) and C-band Sentinel-1A (S-1A)) obtained between 2014 and 2016 to investigate the deformation and the exact amount of displacement in each PT of the area of interest. Based on the results, during the same time interval (between October 2014 and February 2016), the vertical velocities calculated using CSK and S-1A were about −86 and −79 mm/y, respectively. Although the CSK data analysis resulted in a better displacement interpretation of PTs, due to its high resolution and shorter wavelength, the S-1 data analysis also demonstrated sufficient persistent scatterer (PS) points. The research proves that most of the PTs along a transmission line are affected by high land subsidence, which puts them in a serious jeopardy. They must be constantly monitored to ensure their safety and accurate operation. The results are in complete agreement with information of the existing global positioning system (GPS) station in our study area and also the observations of two piezometric wells with declining trends in the groundwater reservoir, which has the greatest effect on the subsidence rate in this area. The analysis revealed that the strength of PTs is at a high risk.



Author(s):  
L. Tosi ◽  
T. Strozzi ◽  
C. Da Lio ◽  
P. Teatini

Abstract. Land subsidence occurred at the Venice coastland over the 2008–2011 period has been investigated by Persistent Scatterer Interferometry (PSI) using a stack of 90 TerraSAR-X stripmap images with a 3 m resolution and a 11-day revisiting time. The regular X-band SAR acquisitions over more than three years coupled with the very-high image resolution has significantly improved the monitoring of ground displacements at regional and local scales, e.g., the entire lagoon, especially the historical palaces, the MoSE large structures under construction at the lagoon inlets to disconnect the lagoon from the Adriatic Sea during high tides, and single small structures scattered within the lagoon environments. Our results show that subsidence is characterized by a certain variability at the regional scale with superimposed important local displacements. The movements range from a gentle uplift to subsidence rates of up to 35 mm yr−1. For instance, settlements of 30–35 mm yr−1 have been detected at the three lagoon inlets in correspondence of the MoSE works, and local sinking bowls up to 10 mm yr−1 connected with the construction of new large buildings or restoration works have been measured in the Venice and Chioggia historical centers. Focusing on the city of Venice, the mean subsidence of 1.1 ± 1.0 mm yr−1 confirms the general stability of the historical center.



2010 ◽  
Vol 10 (9) ◽  
pp. 1865-1875 ◽  
Author(s):  
D. Notti ◽  
J. C. Davalillo ◽  
G. Herrera ◽  
O. Mora

Abstract. The aim of this work is to analyse the advantages and disadvantages of using the new X-band SAR data acquired by TerraSAR-X sensors for landslides mapping. This dataset has been processed using a Persistent Scatterer Interferometry technique over the Upper Tena Valley (Central Pyrenees, Spain). In the first section, the geological and geomorphological setting of the study area is introduced, focusing on the description of the landslide inventory. Then the Stable Point Network technique is briefly described, followed by the assessment of the performance of the X-band SAR dataset. In this context, we present first a model to predict the distribution of Persistent Scatterers based on the slope geometry and the land use information, which has then been validated with X-band data results. On a second stage, we have assessed the performance of X-band dataset to detect and monitor mapped landslides. Finally some illustrative case studies are shown demonstrating the potential of using X-band SAR data not only for landslide mapping but also to detect and monitor deformations affecting human infrastructures.





2019 ◽  
Vol 11 (14) ◽  
pp. 1675 ◽  
Author(s):  
Tomás ◽  
Pagán ◽  
Navarro ◽  
Cano ◽  
Pastor ◽  
...  

This work describes a new procedure aimed to semi-automatically identify clusters of active persistent scatterers and preliminarily associate them with different potential types of deformational processes over wide areas. This procedure consists of three main modules: (i) ADAfinder, aimed at the detection of Active Deformation Areas (ADA) using Persistent Scatterer Interferometry (PSI) data; (ii) LOS2HV, focused on the decomposition of Line Of Sight (LOS) displacements from ascending and descending PSI datasets into vertical and east-west components; iii) ADAclassifier, that semi-automatically categorizes each ADA into potential deformational processes using the outputs derived from (i) and (ii), as well as ancillary external information. The proposed procedure enables infrastructures management authorities to identify, classify, monitor and categorize the most critical deformations measured by PSI techniques in order to provide the capacity for implementing prevention and mitigation actions over wide areas against geological threats. Zeri, Campiglia Marittima–Suvereto and Abbadia San Salvatore (Tuscany, central Italy) are used as case studies for illustrating the developed methodology. Three PSI datasets derived from the Sentinel-1 constellation have been used, jointly with the geological map of Italy (scale 1:50,000), the updated Italian landslide and land subsidence maps (scale 1:25,000), a 25 m grid Digital Elevation Model, and a cadastral vector map (scale 1:5,000). The application to these cases of the proposed workflow demonstrates its capability to quickly process wide areas in very short times and a high compatibility with Geographical Information System (GIS) environments for data visualization and representation. The derived products are of key interest for infrastructures and land management as well as decision-making at a regional scale.





Sign in / Sign up

Export Citation Format

Share Document