scholarly journals A near-infrared gas sensor system based on tunable laser absorption spectroscopy and its application in CH4/C2H2 detection

Author(s):  
Qixin He ◽  
Chuantao Zheng ◽  
Huifang Liu ◽  
Yiding Wang ◽  
Frank K. Tittel
The Analyst ◽  
2021 ◽  
Author(s):  
Zhiwei Liu ◽  
Chuantao Zheng ◽  
Tianyu Zhang ◽  
Yu Zhang ◽  
Yiding Wang ◽  
...  

A near-infrared methane (CH4) sensor system for carbon isotopic abundance analysis was developed based on laser absorption spectroscopy (LAS).


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3216 ◽  
Author(s):  
Shuanke Wang ◽  
Zhenhui Du ◽  
Liming Yuan ◽  
Yiwen Ma ◽  
Xiaoyu Wang ◽  
...  

This paper presents a mid-infrared dimethyl sulfide (CH3SCH3, DMS) sensor based on tunable laser absorption spectroscopy with a distributed feedback interband cascade laser to measure DMS in the atmosphere. Different from previous work, in which only DMS was tested and under pure nitrogen conditions, we measured DMS mixed by common air to establish the actual atmospheric measurement environment. Moreover, we used tunable laser absorption spectroscopy with spectral fitting to enable multi-species (i.e., DMS, CH4, and H2O) measurement simultaneously. Meanwhile, we used empirical mode decomposition and greatly reduced the interference of optical fringes and noise. The sensor performances were evaluated with atmospheric mixture in laboratory conditions. The sensor’s measurement uncertainties of DMS, CH4, and H2O were as low as 80 ppb, 20 ppb, and 0.01% with an integration time 1 s, respectively. The sensor possessed a very low detection limit of 9.6 ppb with an integration time of 164 s for DMS, corresponding to an absorbance of 7.4 × 10−6, which showed a good anti-interference ability and stable performance after optical interference removal. We demonstrated that the sensor can be used for DMS measurement, as well as multi-species atmospheric measurements of DMS, H2O, and CH4 simultaneously.


2013 ◽  
Author(s):  
M. von Edlinger ◽  
J. Scheuermann ◽  
L. Nähle ◽  
C. Zimmermann ◽  
L. Hildebrandt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document