Evaluation of human-scale motion energy harvesting for wearable electronics

2017 ◽  
Author(s):  
Bharat Kathpalia ◽  
David Tan ◽  
Ilan Stern ◽  
Alper Erturk
Author(s):  
Brian S. Hendrickson ◽  
Stuart B. Brown

Small-scale motion energy harvesting has garnered significant interest in recent years, especially given advances in piezoelectric materials, but with limited commercial application. Most harvesting methods to date, including those employing magnetic induction, have focused on coupled resonance. Such harvesters are tuned to resonate with their excitation source and have shown promise in capturing moderately high-frequency (>10Hz), low-displacement motion that is steady. However, coupled harvesters lose efficiency significantly when a source deviates slightly in frequency. They also require large masses and/or buoyant volumes to efficiently capture low frequency (<10Hz) motion. We have been developing a novel technology that combines electromagnetic induction with a proprietary catch-and-release mechanism that absorbs an input motion and then releases it at a much higher frequency to improve conversion efficiency. The energy harvester is simple, compact, and insensitive to excitation frequency. Initial prototypes have demonstrated power densities and specific powers many multiples greater than the best-performing, commercial vibration harvester. We have also developed a validated computer model of the system that indicates that performance could be improved 2–4 times over initial prototypes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pashupati R. Adhikari ◽  
Nishat T. Tasneem ◽  
Russell C. Reid ◽  
Ifana Mahbub

AbstractIncreasing demand for self-powered wearable sensors has spurred an urgent need to develop energy harvesting systems that can reliably and sufficiently power these devices. Within the last decade, reverse electrowetting-on-dielectric (REWOD)-based mechanical motion energy harvesting has been developed, where an electrolyte is modulated (repeatedly squeezed) between two dissimilar electrodes under an externally applied mechanical force to generate an AC current. In this work, we explored various combinations of electrolyte concentrations, dielectrics, and dielectric thicknesses to generate maximum output power employing REWOD energy harvester. With the objective of implementing a fully self-powered wearable sensor, a “zero applied-bias-voltage” approach was adopted. Three different concentrations of sodium chloride aqueous solutions (NaCl-0.1 M, NaCl-0.5 M, and NaCl-1.0 M) were used as electrolytes. Likewise, electrodes were fabricated with three different dielectric thicknesses (100 nm, 150 nm, and 200 nm) of Al2O3 and SiO2 with an additional layer of CYTOP for surface hydrophobicity. The REWOD energy harvester and its electrode–electrolyte layers were modeled using lumped components that include a resistor, a capacitor, and a current source representing the harvester. Without using any external bias voltage, AC current generation with a power density of 53.3 nW/cm2 was demonstrated at an external excitation frequency of 3 Hz with an optimal external load. The experimental results were analytically verified using the derived theoretical model. Superior performance of the harvester in terms of the figure-of-merit comparing previously reported works is demonstrated. The novelty of this work lies in the combination of an analytical modeling method and experimental validation that together can be used to increase the REWOD harvested power extensively without requiring any external bias voltage.


Author(s):  
Carmel Majidi ◽  
Mikko Haataja ◽  
David J. Srolovitz

The development of self-powered electronic devices is essential for emerging technologies such as wireless sensor networks, wearable electronics, and microrobotics. Of particular interest is the rapidly growing field of piezoelectric energy harvesting (PEH), in which mechanical strains are converted to electricity. Recently, PEH has been demonstrated by brushing an array of piezoelectric nanowires against a nanostructured surface. The piezoelectric nanobrush generator can be limited to sub-micron dimensions and thus allows for a vast reduction in the size of self-powered devices. Moreover, energy harvesting is controlled through contact between the nanowire tips and nanostructured surface, which broadens the design space to a wealth of innovations in tribology. Here we propose design criteria based on principles of contact mechanics, elastic rod theory, and continuum piezoelasticity.


Nanoscale ◽  
2019 ◽  
Vol 11 (14) ◽  
pp. 6802-6809 ◽  
Author(s):  
Zhiming Lin ◽  
Yufen Wu ◽  
Qiang He ◽  
ChenChen Sun ◽  
Endong Fan ◽  
...  

A waterproof, high-output and airtight-cavity-airbag structural insole based on a TENG is presented to harvest human energy for driving wearable electronics.


Sign in / Sign up

Export Citation Format

Share Document