Highly sensitive gas refractometer based on inverse mode-coupling of cladding-to-core modes in a tapered four-core fiber

Author(s):  
Zhihua Shao ◽  
Xueguang Qiao ◽  
Qiangzhou Rong
2015 ◽  
Author(s):  
Hee Jung Lee ◽  
Han Seb Moon ◽  
Sang-Kyung Choi ◽  
Hee Su Park
Keyword(s):  

2017 ◽  
Vol 22 (5) ◽  
pp. 057001 ◽  
Author(s):  
Vanita Bhardwaj ◽  
Akhilesh Kumar Pathak ◽  
Vinod Kumar Singh

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5471
Author(s):  
Sigifredo Marrujo-García ◽  
Iván Hernández-Romano ◽  
Daniel A. May-Arrioja ◽  
Vladimir P. Minkovich ◽  
Miguel Torres-Cisneros

In this paper, we propose a highly sensitive temperature sensor based on two cascaded Mach–Zehnder interferometers (MZIs) that work using the Vernier effect. The all-fiber MZIs were assembled by splicing a segment of capillary hollow-core fiber (CHCF) between two sections of multimode fibers (MMFs). This cascaded configuration exhibits a temperature sensitivity of 1.964 nm/°C in a range from 10 to 70 °C, which is ~67.03 times higher than the sensitivity of the single MZI. Moreover, this device exhibits a high-temperature resolution of 0.0153 °C. A numerical analysis was carried out to estimate the devices’ temperature sensitivity and calculate the magnification of the sensitivity produced by the Vernier effect. The numerical results have an excellent agreement with the experimental results and provide a better insight into the working principle of the MZI devices. The sensor’s performance, small size, and easy fabrication make us believe that it is an attractive candidate for temperature measurement in biological applications.


Biosensors ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 377
Author(s):  
Yamei Liu ◽  
Qiwen Zheng ◽  
Hongxia Yuan ◽  
Shenping Wang ◽  
Keqiang Yin ◽  
...  

In this work, a high-sensitivity terahertz (THz) biosensor is achieved by using a graphene/Bragg reflector hybrid structure. This high-sensitivity THz biosensor is developed from the sharp Fano resonance transmission peak created by coupling the graphene Tamm plasmons (GTPs) mode to a defect mode. It is found that the proposed THz biosensor is highly sensitive to the Fermi energy of graphene, as well as the thickness and refractive index of the sensing medium. Through specific parameter settings, the composite structure can achieve both a liquid biosensor and a gas biosensor. For the liquid biosensor, the maximum sensitivity of >1000°/RIU is obtained by selecting appropriate parameters. We believe the proposed layered hybrid structure has the potential to fabricate graphene-based high-sensitivity biosensors.


2018 ◽  
Vol 26 (16) ◽  
pp. 19835 ◽  
Author(s):  
Fengze Tan ◽  
Zhengyong Liu ◽  
Jiajing Tu ◽  
Changyuan Yu ◽  
Chao Lu ◽  
...  
Keyword(s):  

Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 205 ◽  
Author(s):  
Lei Ding ◽  
Yu Li ◽  
Cai Zhou ◽  
Min Hu ◽  
Yuli Xiong ◽  
...  

A highly sensitive directional bending sensor based on a three-core fiber (TCF) Mach-Zehnder interferometer (MZI) is presented in this study. This MZI-based bending sensor was fabricated by fusion-splicing a section of TCF between two single-mode fibers (SMF) with core-offset. Due to the location of the core in the TCF, a bend applied to the TCF-based MZI led to an elongation or shortening of the core, which makes the sensor suitable for directional bending measurement. To analyze the bending characteristics, two types of TCF-based sensors, with the fusion-spliced core located at different positions between the SMFs, were investigated. A swept source was employed in the measurement technique. The experimental results showed that, for the two types of sensors in this setup, the bending sensitivities of the two sensors were 15.36 nm/m−1 and 3.11 nm/m−1 at the bending direction of 0°, and −20.48 nm/m−1 and −5.29 nm/m−1 at the bending direction of 180°. The temperature sensitivities of the two sensors were 0.043 nm/°C and 0.041 nm/°C, respectively. The proposed sensors are compact, versatile, inexpensive to fabricate, and are expected to have potential applications in biomedical sensing.


Sign in / Sign up

Export Citation Format

Share Document