Comparison of four machine learning methods for object-oriented change detection in high-resolution satellite imagery

Author(s):  
Ting Bai ◽  
Kaimin Sun ◽  
Shiquan Deng ◽  
Yan Chen
Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 648
Author(s):  
Guie Li ◽  
Zhongliang Cai ◽  
Yun Qian ◽  
Fei Chen

Enriching Asian perspectives on the rapid identification of urban poverty and its implications for housing inequality, this paper contributes empirical evidence about the utility of image features derived from high-resolution satellite imagery and machine learning approaches for identifying urban poverty in China at the community level. For the case of the Jiangxia District and Huangpi District of Wuhan, image features, including perimeter, line segment detector (LSD), Hough transform, gray-level cooccurrence matrix (GLCM), histogram of oriented gradients (HoG), and local binary patterns (LBP), are calculated, and four machine learning approaches and 25 variables are applied to identify urban poverty and relatively important variables. The results show that image features and machine learning approaches can be used to identify urban poverty with the best model performance with a coefficient of determination, R2, of 0.5341 and 0.5324 for Jiangxia and Huangpi, respectively, although some differences exist among the approaches and study areas. The importance of each variable differs for each approach and study area; however, the relatively important variables are similar. In particular, four variables achieved relatively satisfactory prediction results for all models and presented obvious differences in varying communities with different poverty levels. Housing inequality within low-income neighborhoods, which is a response to gaps in wealth, income, and housing affordability among social groups, is an important manifestation of urban poverty. Policy makers can implement these findings to rapidly identify urban poverty, and the findings have potential applications for addressing housing inequality and proving the rationality of urban planning for building a sustainable society.


2021 ◽  
Author(s):  
Timo Kumpula ◽  
Janne Mäyrä ◽  
Anton Kuzmin ◽  
Arto Viinikka ◽  
Sonja Kivinen ◽  
...  

<p>Sustainable forest management increasingly highlights the maintenance of biological diversity and requires up-to-date information on the occurrence and distribution of key ecological features in forest environments. Different proxy variables indicating species richness and quality of the sites are essential for efficient detecting and monitoring forest biodiversity. European aspen (Populus tremula L.) is a minor deciduous tree species with a high importance in maintaining biodiversity in boreal forests. Large aspen trees host hundreds of species, many of them classified as threatened. However, accurate fine-scale spatial data on aspen occurrence remains scarce and incomprehensive.</p><p> </p><p>We studied detection of aspen using different remote sensing techniques in Evo, southern Finland. Our study area of 83 km<sup>2</sup> contains both managed and protected southern boreal forests characterized by Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst), and birch (Betula pendula and pubescens L.), whereas European aspen has a relatively sparse and scattered occurrence in the area. We collected high-resolution airborne hyperspectral and airborne laser scanning data covering the whole study area and ultra-high resolution unmanned aerial vehicle (UAV) data with RGB and multispectral sensors from selected parts of the area. We tested the discrimination of aspen from other species at tree level using different machine learning methods (Support Vector Machines, Random Forest, Gradient Boosting Machine) and deep learning methods (3D convolutional neural networks).</p><p> </p><p>Airborne hyperspectral and lidar data gave excellent results with machine learning and deep learning classification methods The highest classification accuracies for aspen varied between 91-92% (F1-score). The most important wavelengths for discriminating aspen from other species included reflectance bands of red edge range (724–727 nm) and shortwave infrared (1520–1564 nm and 1684–1706 nm) (Viinikka et al. 2020; Mäyrä et al 2021). Aspen detection using RGB and multispectral data also gave good results (highest F1-score of aspen = 87%) (Kuzmin et al 2021). Different remote sensing data enabled production of a spatially explicit map of aspen occurrence in the study area. Information on aspen occurrence and abundance can significantly contribute to biodiversity management and conservation efforts in boreal forests. Our results can be further utilized in upscaling efforts aiming at aspen detection over larger geographical areas using satellite images.</p>


2016 ◽  
Vol 8 (9) ◽  
pp. 715 ◽  
Author(s):  
Ting Bai ◽  
Deren Li ◽  
Kaimin Sun ◽  
Yepei Chen ◽  
Wenzhuo Li

2020 ◽  
Author(s):  
Majid Bayati ◽  
Mohammad Danesh-Yazdi

<p>The spatiotemporal dynamics of salinity in hypersaline lakes is strongly dependent on the rate of water flow feeding the lake, evaporation rate, and the phenomena of precipitation and dissolution. Although in-situ observations are most reliable in quantifying water quality variables, the spatiotemporal distribution of such data are typically limited or cannot be readily extrapolated for long-term projections. Alternatively, remotely-sensed imagery has facilitated less expensive and stronger ability to estimate water quality over a wide range of spatiotemporal resolutions. This study introduces a machine learning model that leverages in-situ measurements and high-resolution satellite imagery to estimate the salinity concentration in water bodies. To this end, 123 points were sampled in April and July of 2019 across the Lake Urmia surface covering the wide range of salinity fluctuations. Among the artificial neural networks, ANFIS, and linear regression tools examined to determine the relationship between salinity and surface reflectance, artificial neural networks yielded the best accuracy evidenced by R<sup>2</sup> = 0.94 and RMSE = 6.8%. The results show that the seasonal change of salinity is linearly correlated with the volume of water feeding the lake, witnessing that dilution imposes a stronger control on the salinity than bed salt dissolution. The impact of disturbance in the lake circulation due to the causeway is also evident from the sharp changes of salinity around the bridge piers near spring when the mixing of fresh and hypersaline water from the southern and northern parts, respectively, takes place. The results of this study prove the promising potential of machine learning tools fed multi-spectral satellite information to map other water quality metrics than salinity as well.</p>


Sign in / Sign up

Export Citation Format

Share Document