scholarly journals Identifying Urban Poverty Using High-Resolution Satellite Imagery and Machine Learning Approaches: Implications for Housing Inequality

Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 648
Author(s):  
Guie Li ◽  
Zhongliang Cai ◽  
Yun Qian ◽  
Fei Chen

Enriching Asian perspectives on the rapid identification of urban poverty and its implications for housing inequality, this paper contributes empirical evidence about the utility of image features derived from high-resolution satellite imagery and machine learning approaches for identifying urban poverty in China at the community level. For the case of the Jiangxia District and Huangpi District of Wuhan, image features, including perimeter, line segment detector (LSD), Hough transform, gray-level cooccurrence matrix (GLCM), histogram of oriented gradients (HoG), and local binary patterns (LBP), are calculated, and four machine learning approaches and 25 variables are applied to identify urban poverty and relatively important variables. The results show that image features and machine learning approaches can be used to identify urban poverty with the best model performance with a coefficient of determination, R2, of 0.5341 and 0.5324 for Jiangxia and Huangpi, respectively, although some differences exist among the approaches and study areas. The importance of each variable differs for each approach and study area; however, the relatively important variables are similar. In particular, four variables achieved relatively satisfactory prediction results for all models and presented obvious differences in varying communities with different poverty levels. Housing inequality within low-income neighborhoods, which is a response to gaps in wealth, income, and housing affordability among social groups, is an important manifestation of urban poverty. Policy makers can implement these findings to rapidly identify urban poverty, and the findings have potential applications for addressing housing inequality and proving the rationality of urban planning for building a sustainable society.

2016 ◽  
Vol 8 (9) ◽  
pp. 715 ◽  
Author(s):  
Ting Bai ◽  
Deren Li ◽  
Kaimin Sun ◽  
Yepei Chen ◽  
Wenzhuo Li

2020 ◽  
Author(s):  
Majid Bayati ◽  
Mohammad Danesh-Yazdi

<p>The spatiotemporal dynamics of salinity in hypersaline lakes is strongly dependent on the rate of water flow feeding the lake, evaporation rate, and the phenomena of precipitation and dissolution. Although in-situ observations are most reliable in quantifying water quality variables, the spatiotemporal distribution of such data are typically limited or cannot be readily extrapolated for long-term projections. Alternatively, remotely-sensed imagery has facilitated less expensive and stronger ability to estimate water quality over a wide range of spatiotemporal resolutions. This study introduces a machine learning model that leverages in-situ measurements and high-resolution satellite imagery to estimate the salinity concentration in water bodies. To this end, 123 points were sampled in April and July of 2019 across the Lake Urmia surface covering the wide range of salinity fluctuations. Among the artificial neural networks, ANFIS, and linear regression tools examined to determine the relationship between salinity and surface reflectance, artificial neural networks yielded the best accuracy evidenced by R<sup>2</sup> = 0.94 and RMSE = 6.8%. The results show that the seasonal change of salinity is linearly correlated with the volume of water feeding the lake, witnessing that dilution imposes a stronger control on the salinity than bed salt dissolution. The impact of disturbance in the lake circulation due to the causeway is also evident from the sharp changes of salinity around the bridge piers near spring when the mixing of fresh and hypersaline water from the southern and northern parts, respectively, takes place. The results of this study prove the promising potential of machine learning tools fed multi-spectral satellite information to map other water quality metrics than salinity as well.</p>


2021 ◽  
Vol 64 (3) ◽  
pp. 879-891
Author(s):  
Sindhuja Sankaran ◽  
Afef Marzougui ◽  
J. Preston Hurst ◽  
Chongyuan Zhang ◽  
James C. Schnable ◽  
...  

HighlightsVegetation indices (NDVI, GNDVI, and SAVI) extracted from high-resolution satellite imagery were significantly associated with vegetation indices extracted from UAV imagery.High-resolution satellite data can be used to predict maize yield at breeding plot scale.Breeding plot sizes and the variability between maize genotypes may be associated with prediction accuracies.Abstract. The recent availability of high spatial and temporal resolution satellite imagery has widened its applications in agriculture. Plant breeding and genetics programs are currently adopting unmanned aerial vehicle (UAV) based imagery data as a complement to ground data collection. With breeding trials across multiple geographic locations, UAV imaging is not always convenient. Hence, we anticipate that, similar to UAV imaging, phenotyping of individual test plots from high-resolution satellite imagery may also provide value to plant genetics and breeding programs. In this study, high spatial resolution satellite imagery (~38 to 48 cm pixel-1) was compared to imagery acquired using a UAV for its ability to phenotype maize grown in two-row and six-row breeding plots. Statistics (mean, median, sum) of color (red, green, blue), near-infrared, and vegetation indices such as normalized difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI), and soil adjusted vegetation index (SAVI) were extracted from imagery from both sources (UAV and satellite) for comparison at three time points. In general, a strong correlation between satellite and UAV imagery extracted NDVI, GNDVI, and SAVI features (especially with mean and median statistics, p < 0.001) was observed at different time points. The correlation of both UAV and satellite image features with yield potential was maximum (p < 0.001) at the third time point (milk/dough growth stages). For example, Pearson’s correlation coefficients between mean NDVI, GNDVI, and SAVI features with yield potential were 0.52, 0.54, and 0.51 for data derived from UAV imagery, and 0.34, 0.41, and 0.40 for data derived from satellite imagery, respectively. Machine learning algorithms, including least absolute shrinkage and selection operator (Lasso) regression, were evaluated for yield prediction using vegetation index features that were significantly correlated with observed yield. The relationship between satellite imagery with crop performance can be a function of plot size in addition to crop variability. Nevertheless, with the ongoing improvement of satellite technologies, there is a possibility for the integration of satellite data into breeding programs, thus improving phenotyping efficiencies. Keywords: Image processing, Machine learning, Plant breeding, Statistical analysis, Unmanned aerial vehicles.


2007 ◽  
Vol 135 (12) ◽  
pp. 4202-4213 ◽  
Author(s):  
Yarice Rodriguez ◽  
David A. R. Kristovich ◽  
Mark R. Hjelmfelt

Abstract Premodification of the atmosphere by upwind lakes is known to influence lake-effect snowstorm intensity and locations over downwind lakes. This study highlights perhaps the most visible manifestation of the link between convection over two or more of the Great Lakes lake-to-lake (L2L) cloud bands. Emphasis is placed on L2L cloud bands observed in high-resolution satellite imagery on 2 December 2003. These L2L cloud bands developed over Lake Superior and were modified as they passed over Lakes Michigan and Erie and intervening land areas. This event is put into a longer-term context through documentation of the frequency with which lake-effect and, particularly, L2L cloud bands occurred over a 5-yr time period over different areas of the Great Lakes region.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 66
Author(s):  
Kirill A. Korznikov ◽  
Dmitry E. Kislov ◽  
Jan Altman ◽  
Jiří Doležal ◽  
Anna S. Vozmishcheva ◽  
...  

Very high resolution satellite imageries provide an excellent foundation for precise mapping of plant communities and even single plants. We aim to perform individual tree recognition on the basis of very high resolution RGB (red, green, blue) satellite images using deep learning approaches for northern temperate mixed forests in the Primorsky Region of the Russian Far East. We used a pansharpened satellite RGB image by GeoEye-1 with a spatial resolution of 0.46 m/pixel, obtained in late April 2019. We parametrized the standard U-Net convolutional neural network (CNN) and trained it in manually delineated satellite images to solve the satellite image segmentation problem. For comparison purposes, we also applied standard pixel-based classification algorithms, such as random forest, k-nearest neighbor classifier, naive Bayes classifier, and quadratic discrimination. Pattern-specific features based on grey level co-occurrence matrices (GLCM) were computed to improve the recognition ability of standard machine learning methods. The U-Net-like CNN allowed us to obtain precise recognition of Mongolian poplar (Populus suaveolens Fisch. ex Loudon s.l.) and evergreen coniferous trees (Abies holophylla Maxim., Pinus koraiensis Siebold & Zucc.). We were able to distinguish species belonging to either poplar or coniferous groups but were unable to separate species within the same group (i.e. A. holophylla and P. koraiensis were not distinguishable). The accuracy of recognition was estimated by several metrics and exceeded values obtained for standard machine learning approaches. In contrast to pixel-based recognition algorithms, the U-Net-like CNN does not lead to an increase in false-positive decisions when facing green-colored objects that are similar to trees. By means of U-Net-like CNN, we obtained a mean accuracy score of up to 0.96 in our computational experiments. The U-Net-like CNN recognizes tree crowns not as a set of pixels with known RGB intensities but as spatial objects with a specific geometry and pattern. This CNN’s specific feature excludes misclassifications related to objects of similar colors as objects of interest. We highlight that utilization of satellite images obtained within the suitable phenological season is of high importance for successful tree recognition. The suitability of the phenological season is conceptualized as a group of conditions providing highlighting objects of interest over other components of vegetation cover. In our case, the use of satellite images captured in mid-spring allowed us to recognize evergreen fir and pine trees as the first class of objects (“conifers”) and poplars as the second class, which were in a leafless state among other deciduous tree species.


Sign in / Sign up

Export Citation Format

Share Document