scholarly journals Automatic speech recognition for launch control center communication using recurrent neural networks with data augmentation and custom language model

Author(s):  
Joseph Osborne ◽  
Madison Lee ◽  
Kyongsik Yun ◽  
Thomas T. Lu ◽  
Edward Chow
2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


2013 ◽  
Vol 6 (1) ◽  
pp. 266-271
Author(s):  
Anurag Upadhyay ◽  
Chitranjanjit Kaur

This paper addresses the problem of speech recognition to identify various modes of speech data. Speaker sounds are the acoustic sounds of speech. Statistical models of speech have been widely used for speech recognition under neural networks. In paper we propose and try to justify a new model in which speech co articulation the effect of phonetic context on speech sound is modeled explicitly under a statistical framework. We study speech phone recognition by recurrent neural networks and SOUL Neural Networks. A general framework for recurrent neural networks and considerations for network training are discussed in detail. SOUL NN clustering the large vocabulary that compresses huge data sets of speech. This project also different Indian languages utter by different speakers in different modes such as aggressive, happy, sad, and angry. Many alternative energy measures and training methods are proposed and implemented. A speaker independent phone recognition rate of 82% with 25% frame error rate has been achieved on the neural data base. Neural speech recognition experiments on the NTIMIT database result in a phone recognition rate of 68% correct. The research results in this thesis are competitive with the best results reported in the literature. 


Sign in / Sign up

Export Citation Format

Share Document