Applying multiscale imaging and spectroscopic techniques for studying capacity and cycle life degradation in high energy density lithium-ion cells (Conference Presentation)

Author(s):  
Jagjit Nanda ◽  
Rose E. Ruther
Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3586
Author(s):  
Qi An ◽  
Xingru Zhao ◽  
Shuangfu Suo ◽  
Yuzhu Bai

Lithium-ion capacitors (LICs) have been widely explored for energy storage. Nevertheless, achieving good energy density, satisfactory power density, and stable cycle life is still challenging. For this study, we fabricated a novel LIC with a NiO-rGO composite as a negative material and commercial activated carbon (AC) as a positive material for energy storage. The NiO-rGO//AC system utilizes NiO nanoparticles uniformly distributed in rGO to achieve a high specific capacity (with a current density of 0.5 A g−1 and a charge capacity of 945.8 mA h g−1) and uses AC to provide a large specific surface area and adjustable pore structure, thereby achieving excellent electrochemical performance. In detail, the NiO-rGO//AC system (with a mass ratio of 1:3) can achieve a high energy density (98.15 W h kg−1), a high power density (10.94 kW kg−1), and a long cycle life (with 72.1% capacity retention after 10,000 cycles). This study outlines a new option for the manufacture of LIC devices that feature both high energy and high power densities.


2020 ◽  
Vol MA2020-02 (3) ◽  
pp. 629-629
Author(s):  
Xiao-Guang Yang ◽  
Teng Liu ◽  
Shanhai Ge ◽  
Chao-Yang Wang

Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1201 ◽  
Author(s):  
Neha Chawla ◽  
Meer Safa

Lithium-ion batteries are currently used for various applications since they are lightweight, stable, and flexible. With the increased demand for portable electronics and electric vehicles, it has become necessary to develop newer, smaller, and lighter batteries with increased cycle life, high energy density, and overall better battery performance. Since the sources of lithium are limited and also because of the high cost of the metal, it is necessary to find alternatives. Sodium batteries have shown great potential, and hence several researchers are working on improving the battery performance of the various sodium batteries. This paper is a brief review of the current research in sodium-sulfur and sodium-air batteries.


2019 ◽  
Vol 7 (6) ◽  
pp. 2694-2701 ◽  
Author(s):  
Jae-Hyung Kim ◽  
Kang-Joon Park ◽  
Suk Jun Kim ◽  
Chong S. Yoon ◽  
Yang-Kook Sun

Lithium-ion batteries with high energy density, long cycle life, and appropriate safety levels are necessary to facilitate the penetration of electrified transportation systems into the automobile market.


Clean Energy ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 853-860
Author(s):  
Gaurav Pratap Singh ◽  
Yash Lehri ◽  
Lakshay Bhatia ◽  
Yogesh Sehgal

Abstract Safe and efficient operation of batteries is always desired but batteries with a high energy density pose a threat to the system causing thermal breakdown, reduced performance and rapid ageing. To reduce such vulnerabilities, an optimum environment with controlled parameters is required. Four parameters have been considered for analysis, i.e. state of charge, current, voltage and temperature. The module makes a detailed analysis of the above-mentioned parameters and suggests a microcontroller-based prototype that is capable of monitoring the external factors in real time and generating relevant warnings.


Sign in / Sign up

Export Citation Format

Share Document