scholarly journals Constraining the models' response of tropical clouds to SST forcings using CALIPSO observations

Author(s):  
Gregory Cesana ◽  
Tony Del Genio ◽  
Andrew Ackerman
Keyword(s):  
2020 ◽  
Author(s):  
Traute Crueger ◽  
Hauke Schmidt ◽  
Bjorn Stevens

<p>Under present day conditions the observations approximately show a hemispheric symmetry of the top of atmosphere (TOA)  short wave (SW) reflection despite the asymmetry of surface SW reflection. This has been confirmed by climate models. With models in an aqua planet setup, Voigt et al. (2014) found that tropical clouds largely compensate surface SW hemispheric asymmetries, however to a different degree in dependence on the convection scheme.</p><p>In this study, we question, whether there is also a hemispheric symmetry of TOA SW radiation under changed atmospheric radiation conditions. For that reason, we analyze experiments performed with a set of fully coupled general circulation models. The experiments were performed with either a) hemispheric asymmetric incoming radiation, b) increased atmospheric CO2 concentrations, c) increased atmospheric CO2 concentrations combined with increased stratospheric aerosol burden, or d) increased atmospheric CO2 concentration in conjunction with increased ocean albedo.</p><p>We show that generally, a hemispheric symmetry of TOA SW radiation does not occur. Overall, among the group of models, the hemispheric TOA SW radiation budgets are roughly similar for the distinct experiments, although the models utilyze different convection schemes.  We discuss the role of surface and atmospheric feedbacks in the different experiments, especially of tropical and extratropical clouds.</p><p>Reference:<br>Voigt, A., B. Stevens, J. Bader, and T. Mauritsen, 2014: Compensation of Hemispheric Albedo Asymmetries by Shifts of the ITCZ and Tropical Clouds. J. Climate, 27, 1029–1045, https://doi.org/10.1175/JCLI-D-13-00205.1.</p>


2013 ◽  
Vol 26 (2) ◽  
pp. 399-413 ◽  
Author(s):  
Hui Su ◽  
Jonathan H. Jiang

Abstract Changes in tropical cloud vertical structure, cloud radiative forcing (CRF), and circulation exhibit distinctly different characteristics during the 2006/07 and 2009/10 El Niños, revealed by CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) observations and reanalysis data. On the tropical average, the 2009/10 has a decrease of clouds from 2 to 14 km, an increase of clouds in the boundary layer, and an increase of cirrus clouds above 14 km. The tropical-mean cloud anomalies in the middle to upper troposphere (6–14 km) for the 2006/07 El Niño are nearly opposite to those in 2009/10 El Niño. The tropical averaged net CRF anomaly at the top of the atmosphere (TOA) is 0.6–0.7 W m−2 cooling (0.02–0.5 W m−2 warming) for the 2009/10 (2006/07) El Niño. The 2009/10 El Niño is associated with a strengthening of tropical circulation, increased high (low) clouds in extremely strong ascending (descending) regimes, and decreased clouds in the middle and high altitudes in a broad range of moderate circulation regimes. The strengthening of tropical circulation is primarily caused by the enhancement of the Hadley circulation. The 2006/07 El Niño is associated with a weakening of the tropical circulation, primarily caused by the reduction of the Walker circulation. The cloud anomalies in each circulation regime are approximately opposite for these two El Niños. The analysis herein suggests that both the magnitude and pattern of sea surface temperature anomalies in the two events contribute to the differences in clouds and circulation anomalies, with magnitude playing a dominant role. The contrasting behaviors of the two El Niños highlight the nonlinear response of tropical clouds and circulation to El Niño SST forcing.


2007 ◽  
Vol 34 (20) ◽  
Author(s):  
M. E. Hagan ◽  
A. Maute ◽  
R. G. Roble ◽  
A. D. Richmond ◽  
T. J. Immel ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document