The effect of ion beam etching process on laser damage resistance of fused silica

Author(s):  
Ma ping ◽  
Yan dingyao ◽  
Huang jinyong ◽  
He xiang ◽  
Wang Gang ◽  
...  
Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1294
Author(s):  
Yaoyu Zhong ◽  
Yifan Dai ◽  
Feng Shi ◽  
Ci Song ◽  
Ye Tian ◽  
...  

Nanoscale laser damage precursors generated from fabrication have emerged as a new bottleneck that limits the laser damage resistance improvement of fused silica optics. In this paper, ion beam etching (IBE) technology is performed to investigate the evolutions of some nanoscale damage precursors (such as contamination and chemical structural defects) in different ion beam etched depths. Surface material structure analyses and laser damage resistance measurements are conducted. The results reveal that IBE has an evident cleaning effect on surfaces. Impurity contamination beneath the polishing redeposition layer can be mitigated through IBE. Chemical structural defects can be significantly reduced, and surface densification is weakened after IBE without damaging the precision of the fused silica surface. The photothermal absorption on the fused silica surface can be decreased by 41.2%, and the laser-induced damage threshold can be raised by 15.2% after IBE at 250 nm. This work serves as an important reference for characterizing nanoscale damage precursors and using IBE technology to increase the laser damage resistance of fused silica optics.


RSC Advances ◽  
2018 ◽  
Vol 8 (57) ◽  
pp. 32417-32422
Author(s):  
Laixi Sun ◽  
Ting Shao ◽  
Jianfeng Xu ◽  
Xiangdong Zhou ◽  
Xin Ye ◽  
...  

RIBE and DCE techniques can be combined to tracelessly mitigate laser damage precursors on a fused silica surface.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1226
Author(s):  
Wanli Zhang ◽  
Feng Shi ◽  
Ci Song ◽  
Ye Tian ◽  
Yongxiang Shen

The enhancement of laser damage resistance of fused silica optics was a hotspot in scientific research. At present, a variety of modern processes have been produced to improve the laser induced damage threshold (LIDT) of fused silica optics. They included pre-treatment processes represented by flexible computer controlled optical surfacing (CCOS), magnetorheological finishing (MRF), ion beam finishing (IBF), and post-treatment processes represented by dynamic chemical etching (DCE). These have achieved remarkable results. However, there are still some problems that need to be solved urgently, such as excessive material removal, surface accuracy fluctuation in the DCE process, and the pollution in MRF process, etc. In view of above problems, an MRF, CCOS, IBF and shallow DCE combined technique was used to process fused silica optics. The surface morphology could be greatly controlled and chemical etching depth was reduced, while the LIDT increased steadily. After processing by this combined technique, the LIDT increased to 12.1 J/cm2 and the laser damage resistance properties of fused silica were significantly enhanced. In general, the MRF, IBF, CCOS and shallow DCE combined technique brought much help to the enhancement of laser damage resistance of fused silica, and could be used as a process route in the manufacturing process of fused silica.


2020 ◽  
Vol 34 (08) ◽  
pp. 2050060 ◽  
Author(s):  
Bo Li ◽  
Xia Xiang ◽  
Chengxiang Tian ◽  
Chunyuan Hou ◽  
Wei Liao ◽  
...  

The laser damage resistance of fused silica optics depends significantly on the surface quality. In this work, anisotropic etching with inert ion beams at various ion incident angles was performed to investigate the evolution of the fused silica surface. The results show that the surface is smoothed when the incident angle is below [Formula: see text]. However, the fused silica surface starts to become coarse owing to the formation of nanostructures on the surface when the incident angle exceeds [Formula: see text]. Further, ion beam etching at a large incident angle of [Formula: see text] removes subsurface defects and less induces nanostructures, resulting in reduction of the surface roughness. The concentrations of impurities and defects are both significantly reduced after ion beam etching. The surface quality, subsurface and surface defects, and surface impurities determine the variation in the laser damage threshold of fused silica with the ion incident angle. The results demonstrate successful application of ion beam etching to improve the laser damage resistant characteristics of fused silica optics. Ion beam etching is a very versatile tool that provides physical erosion to anisotropically mitigate surface damage of fused silica.


2016 ◽  
Vol 24 (1) ◽  
pp. 199 ◽  
Author(s):  
Laixi Sun ◽  
Hongjie Liu ◽  
Jin Huang ◽  
Xin Ye ◽  
Handing Xia ◽  
...  

2013 ◽  
Vol 52 (7) ◽  
pp. 1368 ◽  
Author(s):  
Mathias Mende ◽  
Stefan Schrameyer ◽  
Henrik Ehlers ◽  
Detlev Ristau ◽  
Laurent Gallais

2007 ◽  
Vol 364-366 ◽  
pp. 719-723
Author(s):  
Quan Liu ◽  
Jian Hong Wu ◽  
Ling Ling Fang ◽  
Chao Ming Li

A fused silica phase mask with the period of 1069nm, and ruled area 50×50mm2 has been fabricated by a new technique, which combines holographic-ion beam etching and reactive ion beam etching. This involves several steps: coating of substrates with controlled thickness of photoresist, formation of a grating mask by holograph interference exposure and development, and finally transferring etching of this mask into the fused silica substrate to form a permanent phase mask. Experimental measurements have shown that the zero order diffraction efficiency is less than 4% and the plus and minus first-order diffraction efficiency is more than 35%. Theoretical analysis has shown that these phase masks can be used for fabricating UV written Fiber Bragg Gratings.


2016 ◽  
Vol 58 ◽  
pp. 151-157 ◽  
Author(s):  
Mingjin Xu ◽  
Yifan Dai ◽  
Lin Zhou ◽  
Feng Shi ◽  
Wen Wan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document