Practical automatic feedback system for polyphoto CD control

1996 ◽  
Author(s):  
Jeng-Hong Chen ◽  
C. Y. Wang
2020 ◽  
Vol 123 (3) ◽  
pp. 1103-1112
Author(s):  
Carlos R. Hernandez-Castillo ◽  
Rodrigo S. Maeda ◽  
J. Andrew Pruszynski ◽  
Jörn Diedrichsen

Humans have the remarkable ability to hold, grasp, and manipulate objects. Previous work has reported rapid and coordinated reactions in hand and shoulder muscles in response to external perturbations to the arm during object manipulation; however, little is known about how somatosensory feedback of an object slipping in the hand influences responses of the arm. We built a handheld device to stimulate the sensation of slipping at all five fingertips. The device was integrated into an exoskeleton robot that supported it against gravity. The setup allowed us to decouple somatosensory stimulation in the fingers from forces applied to the arm, two variables that are highly interdependent in real-world scenarios. Fourteen participants performed three experiments in which we measured their arm feedback responses during slip stimulation. Slip stimulations were applied horizontally in one of two directions, and participants were instructed to either follow the slip direction or move the arm in the opposite direction. Participants showed shoulder muscle responses within ∼67 ms of slip onset when following the direction of slip but significantly slower responses when instructed to move in the opposite direction. Shoulder responses were modulated by the speed but not the distance of the slip. Finally, when slip stimulation was combined with mechanical perturbations to the arm, we found that sensory information from the fingertips significantly modulated the shoulder feedback responses. Overall, the results demonstrate the existence of a rapid feedback system that stabilizes handheld objects. NEW & NOTEWORTHY We tested whether the sensation of an object slipping from the fingers modulates shoulder feedback responses. We found rapid shoulder feedback responses when participants were instructed to follow the slip direction with the arm. Shoulder responses following mechanical joint perturbations were also potentiated when combined with slipping. These results demonstrate the existence of fast and automatic feedback responses in the arm in reaction to sensory input to the fingertips that maintain grip on handheld objects.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Susumu Ookawara ◽  
Kiyonori Ito ◽  
Takayuki Uchida ◽  
Keito Tokuyama ◽  
Satoshi Kiryu ◽  
...  

Abstract Background It has been difficult to sufficiently achieve body-fluid management using blood volume (BV) monitor during hemodialysis (HD) with constant ultrafiltration (UF) rate. Recently, a relative BV change-guided UF control (BV-UFC) system was developed by combining the concepts of an automatic feedback system that could control the UF rate and profile with real- time monitoring of relative changes in BV (%ΔBV). However, this system has limited application in the clinical setting. Therefore, in this study, we aimed to perform the crossover study on HD with BV-UFC compared to standard HD in terms of hemodynamic stability during HD. Methods Forty-eight patients entered an 8-week crossover period of standard HD or HD with BV-UFC. Prevalence of intradialytic hypotension (IDH) as a primary outcome and changes in blood pressure (BP), differences in %ΔBV, and achievement of the target ultrafiltration volume as secondary outcomes were compared. IDH was defined as a reduction in systolic BP ≥20 mmHg from the baseline value at 10 min after HD initiation. Results No significant differences were found in the prevalence of IDH, frequency of intervention for symptomatic IDH, and achievement of the target ultrafiltration volume between the groups. The %ΔBV was significantly fewer (-12.1 ± 4.8% vs. -14.4 ± 5.2%, p <0.001) in the HD with BV-UFC than that in the standard HD. Conclusions HD with BV-UFC did not reduce the prevalence of IDH compared with standard HD. The relief of a relative BV reduction at the end of HD may be beneficial in patients undergoing HD with BV-UFC. Trial Registration UMIN, UMIN000024670. Registered on December 1, 2016.


2019 ◽  
Author(s):  
Carlos R. Hernandez-Castillo ◽  
Rodrigo S. Maeda ◽  
J. Andrew Pruszynski ◽  
Jörn Diedrichsen

ABSTRACTHumans have the remarkable ability to hold, grasp, and manipulate objects. Previous work has reported rapid and coordinated reactions in hand and shoulder muscles in response to external perturbations to the arm during object manipulation; however, little is known about how somatosensory feedback of an object slipping in the hand influences responses of the arm. We built a hand-held device to stimulate the sensation of slipping at all five fingertips. The device was integrated into an exoskeleton robot that supported it against gravity. The setup allowed us to decouple somatosensory stimulation in the fingers from forces applied to the arm— two variables that are highly interdependent in real-world scenarios. Fourteen participants performed three experiments in which we measured their arm feedback responses during slip stimulation. Slip stimulations were applied horizontally, in one of two directions, and participants were either instructed to follow the slip direction, or to move the arm in the opposite direction. Participants showed responses within ∼67 ms of slip onset when following the direction of slip, but significantly slower responses when instructed to move in the opposite direction. Arm responses were modulated by the speed but not the distance of the slip. Finally, when slip stimulation was combined with mechanical perturbations to the arm, we found that sensory information from the fingertips significantly modulated the shoulder feedback response. Overall, the results demonstrate the existence of a rapid feedback system that stabilizes hand-held objects.NEW & NOTHEWORTHYWe tested whether the sensation of an object slipping from the fingers modulates shoulder feedback responses. We found rapid shoulder feedback responses when participants were instructed to follow the slip direction with the arm. Shoulder responses following mechanical joint perturbations were also potentiated when combined with slipping. These results demonstrate the existence of fast and automatic feedback responses in the arm in reaction to sensory input to the fingertips that maintain grip on hand-held objects.


Author(s):  
Oliver C. Wells ◽  
Mark E. Welland

Scanning tunneling microscopes (STM) exist in two versions. In both of these, a pointed metal tip is scanned in close proximity to the specimen surface by means of three piezos. The distance of the tip from the sample is controlled by a feedback system to give a constant tunneling current between the tip and the sample. In the low-end STM, the system has a mechanical stability and a noise level to give a vertical resolution of between 0.1 nm and 1.0 nm. The atomic resolution STM can show individual atoms on the surface of the specimen.A low-end STM has been put into the specimen chamber of a scanning electron microscope (SEM). The first objective was to investigate technological problems such as surface profiling. The second objective was for exploratory studies. This second objective has already been achieved by showing that the STM can be used to study trapping sites in SiO2.


1971 ◽  
Vol 10 (01) ◽  
pp. 16-24
Author(s):  
J. Fog Pedersen ◽  
M. Fog Pedersen ◽  
Paul Madsen

SummaryAn accurate catheter-free technique for clinical determination simultaneouslyof glomerular filtration rate and effective renal plasma flow by means of radioisotopes has been developed. The renal function is estimated by the amount of radioisotopes necessary to maintain a constant concentration in the patient’s blood. The infusion pumps are steered by a feedback system, the pumps being automatically turned on when the radiation measured over the patient’s head falls below a certain preset level and turned off when this level is again readied. 131I-iodopyracet was used for the estimation of effective renal plasma flow and125I-iothalamate estimation of the glomerular filtration rate. These clearances were compared to the conventional bladder clearances and good correlation was found between these two clearance methods (correlation coefficients 0.97 and.90 respectively). The advantages and disadvantages of this new clearance technique are discussed.


Sign in / Sign up

Export Citation Format

Share Document