amorphous thin film
Recently Published Documents


TOTAL DOCUMENTS

161
(FIVE YEARS 17)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuki Tsuruma ◽  
Emi Kawashima ◽  
Yoshikazu Nagasaki ◽  
Takashi Sekiya ◽  
Gaku Imamura ◽  
...  

AbstractPower devices (PD) are ubiquitous elements of the modern electronics industry that must satisfy the rigorous and diverse demands for robust power conversion systems that are essential for emerging technologies including Internet of Things (IoT), mobile electronics, and wearable devices. However, conventional PDs based on “bulk” and “single-crystal” semiconductors require high temperature (> 1000 °C) fabrication processing and a thick (typically a few tens to 100 μm) drift layer, thereby preventing their applications to compact devices, where PDs must be fabricated on a heat sensitive and flexible substrate. Here we report next-generation PDs based on “thin-films” of “amorphous” oxide semiconductors with the performance exceeding the silicon limit (a theoretical limit for a PD based on bulk single-crystal silicon). The breakthrough was achieved by the creation of an ideal Schottky interface without Fermi-level pinning at the interface, resulting in low specific on-resistance Ron,sp (< 1 × 10–4 Ω cm2) and high breakdown voltage VBD (~ 100 V). To demonstrate the unprecedented capability of the amorphous thin-film oxide power devices (ATOPs), we successfully fabricated a prototype on a flexible polyimide film, which is not compatible with the fabrication process of bulk single-crystal devices. The ATOP will play a central role in the development of next generation advanced technologies where devices require large area fabrication on flexible substrates and three-dimensional integration.


2021 ◽  
Author(s):  
Yuki Tsuruma ◽  
Emi Kawashima ◽  
Yoshikazu Nagasaki ◽  
Takashi Sekiya ◽  
Gaku Imamura ◽  
...  

Abstract Power devices (PD) are ubiquitous elements of the modern electronics industry that must satisfy the rigorous and diverse demands for robust power conversion systems that are essential for emerging technologies including Internet of Things (IoT), mobile electronics, and wearable devices. However, conventional PDs based on “bulk” and “single-crystal” semiconductors require high temperature (>1000°C) fabrication processing and a thick (typically a few tens to 100 μm) drift layer1, thereby preventing their applications to compact devices2, where PDs must be fabricated on a heat sensitive and flexible substrate. Here we report next-generation PDs based on “thin-films” of “amorphous” oxide semiconductors with the performance exceeding the silicon limit (a theoretical limit for a PD based on bulk single-crystal silicon3). The breakthrough was achieved by the creation of an ideal Schottky interface without Fermi-level pinning at the interface, resulting in low specific on-resistance Ron,sp (<1×10-4 Ωcm2) and high breakdown voltage VBD (~100 V). To demonstrate the unprecedented capability of the amorphous thin-film oxide power devices (ATOPs), we successfully fabricated a prototype on a flexible polyimide film, which is not compatible with the fabrication process of bulk single-crystal devices. The ATOP will play a central role in the development of next generation advanced technologies where devices require large area fabrication on flexible substrates and three-dimensional integration.


2021 ◽  
Vol 10 (5) ◽  
pp. 308-315
Author(s):  
Yuka YAMADA ◽  
Shinji FUKUMOTO ◽  
Kozo FUJIMOTO

2020 ◽  
Vol 59 (SN) ◽  
pp. SN1015
Author(s):  
Hideyuki Kanehara ◽  
Yuki Araki ◽  
Hiroyasu Katsuno ◽  
Toshitaka Nakada

2020 ◽  
Vol 141 ◽  
pp. 109425 ◽  
Author(s):  
Dhanaji B. Malavekar ◽  
Vaibhav C. Lokhande ◽  
Vikas J. Mane ◽  
Shivaji B. Ubale ◽  
Umakant M. Patil ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 599
Author(s):  
Xiaoyu Gu ◽  
Hengwei Luan ◽  
Xinglong Yang ◽  
Xinchao Wang ◽  
Kaixuan Fang ◽  
...  

In this work, a new multi-component (CrFeMoNbZr)Ox system was developed. The thin films presented dual-phase amorphous structures, comprising a dominant amorphous alloy phase and a small amount of an amorphous oxide phase. The thin films showed higher hardness and better corrosion resistance than a commercial Zr-based alloy. The combined properties of high hardness and superior corrosion-resistance make the amorphous thin film a candidate for coating materials on commercial Zr-based alloys for engineering applications.


AIP Advances ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 025109 ◽  
Author(s):  
O. Agirseven ◽  
D. T. Rivella ◽  
J. E. S. Haggerty ◽  
P. O. Berry ◽  
K. Diffendaffer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document