PSO algorithm for UAV autonomous path planning with threat and energy cost optimization

Author(s):  
STANISLAW KONATOWSKI ◽  
Piotr Pawlowski
2012 ◽  
Vol 38 (9) ◽  
pp. 1528 ◽  
Author(s):  
Gang LIU ◽  
Song-Yang LAO ◽  
Can YUAN ◽  
Lv-Lin HOU ◽  
Dong-Feng TAN
Keyword(s):  

2013 ◽  
Vol 791-793 ◽  
pp. 1423-1426
Author(s):  
Hai Min Wei ◽  
Rong Guang Liu

Project schedule management is the management to each stage of the degree of progress and project final deadline in the project implementation process. Its purpose is to ensure that the project can meet the time constraints under the premise of achieving its overall objectives.When the progress of schedule found deviation in the process of schedule management ,the progress of the plan which have be advanced previously need to adjust.This article mainly discussed to solve the following two questions:establish the schedule optimization model by using the method of linear;discuss the particle swarm optimization (PSO) algorithm and its parameters which have effect on the algorithm:Particle swarm optimization (PSO) algorithm is presented in the time limited project and the application of a cost optimization.


2021 ◽  
Vol 16 (4) ◽  
pp. 405-417
Author(s):  
L. Banjanovic-Mehmedovic ◽  
I. Karabegovic ◽  
J. Jahic ◽  
M. Omercic

Due to COVID-19 pandemic, there is an increasing demand for mobile robots to substitute human in disinfection tasks. New generations of disinfection robots could be developed to navigate in high-risk, high-touch areas. Public spaces, such as airports, schools, malls, hospitals, workplaces and factories could benefit from robotic disinfection in terms of task accuracy, cost, and execution time. The aim of this work is to integrate and analyse the performance of Particle Swarm Optimization (PSO) algorithm, as global path planner, coupled with Dynamic Window Approach (DWA) for reactive collision avoidance using a ROS-based software prototyping tool. This paper introduces our solution – a SLAM (Simultaneous Localization and Mapping) and optimal path planning-based approach for performing autonomous indoor disinfection work. This ROS-based solution could be easily transferred to different hardware platforms to substitute human to conduct disinfection work in different real contaminated environments.


2021 ◽  
pp. 302-309
Author(s):  
Yulin Li ◽  
Dong Guo ◽  
Weier Qin
Keyword(s):  

2016 ◽  
Vol 36 (2) ◽  
pp. 120-126 ◽  
Author(s):  
Nianyin Zeng ◽  
Hong Zhang ◽  
Yanping Chen ◽  
Binqiang Chen ◽  
Yurong Liu

Purpose This paper aims to present a novel particle swarm optimization (PSO) based on a non-homogeneous Markov chain and differential evolution (DE) for path planning of intelligent robot when having obstacles in the environment. Design/methodology/approach The three-dimensional path surface of the intelligent robot is decomposed into a two-dimensional plane and the height information in z axis. Then, the grid method is exploited for the environment modeling problem. After that, a recently proposed switching local evolutionary PSO (SLEPSO) based on non-homogeneous Markov chain and DE is analyzed for the path planning problem. The velocity updating equation of the presented SLEPSO algorithm jumps from one mode to another based on the non-homogeneous Markov chain, which can overcome the contradiction between local and global search. In addition, DE mutation and crossover operations can enhance the capability of finding a better global best particle in the PSO method. Findings Finally, the SLEPSO algorithm is successfully applied to the path planning in two different environments. Comparing with some well-known PSO algorithms, the experiment results show the feasibility and effectiveness of the presented method. Originality/value Therefore, this can provide a new method for the area of path planning of intelligent robot.


2015 ◽  
Vol 24 (1) ◽  
pp. 69-83 ◽  
Author(s):  
Zhonghua Tang ◽  
Yongquan Zhou

AbstractUninhabited combat air vehicle (UCAV) path planning is a complicated, high-dimension optimization problem. To solve this problem, we present in this article an improved glowworm swarm optimization (GSO) algorithm based on the particle swarm optimization (PSO) algorithm, which we call the PGSO algorithm. In PGSO, the mechanism of a glowworm individual was modified via the individual generation mechanism of PSO. Meanwhile, to improve the presented algorithm’s convergence rate and computational accuracy, we reference the idea of parallel hybrid mutation and local search near the global optimal location. To prove the performance of the proposed algorithm, PGSO was compared with 10 other population-based optimization methods. The experiment results show that the proposed approach is more effective in UCAV path planning than most of the other meta-heuristic algorithms.


Sign in / Sign up

Export Citation Format

Share Document