Mid-infrared semiconductor laser spectroscopy with hollow core fibers (Conference Presentation)

Author(s):  
Wei Ren
Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 420
Author(s):  
Ang Deng ◽  
Wonkeun Chang

We numerically investigate the effect of scaling two key structural parameters in antiresonant hollow-core fibers—dielectric wall thickness of the cladding elements and core size—in view of low-loss mid-infrared beam delivery. We demonstrate that there exists an additional resonance-like loss peak in the long-wavelength limit of the first transmission band in antiresonant hollow-core fibers. We also find that the confinement loss in tubular-type hollow-core fibers depends strongly on the core size, where the degree of the dependence varies with the cladding tube size. The loss scales with the core diameter to the power of approximately −5.4 for commonly used tubular-type hollow-core fiber designs.


2009 ◽  
Author(s):  
Alan Fried ◽  
Petter Weibring ◽  
Dirk Richter ◽  
James Walega

2014 ◽  
Vol 86 (24) ◽  
pp. 12191-12198 ◽  
Author(s):  
Robert van Geldern ◽  
Martin E. Nowak ◽  
Martin Zimmer ◽  
Alexandra Szizybalski ◽  
Anssi Myrttinen ◽  
...  

2007 ◽  
Vol 111 (28) ◽  
pp. 6217-6221 ◽  
Author(s):  
Kai Seefeld ◽  
Robert Brause ◽  
Thomas Häber ◽  
Karl Kleinermanns

2019 ◽  
Vol 16 (8) ◽  
pp. 085107
Author(s):  
Wei Huang ◽  
Yulong Cui ◽  
Zhixian Li ◽  
Zhiyue Zhou ◽  
Yubin Chen ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3813 ◽  
Author(s):  
Piotr Jaworski ◽  
Paweł Kozioł ◽  
Karol Krzempek ◽  
Dakun Wu ◽  
Fei Yu ◽  
...  

In this work, we present for the first time a laser-based dual gas sensor utilizing a silica-based Antiresonant Hollow-Core Fiber (ARHCF) operating in the Near- and Mid-Infrared spectral region. A 1-m-long fiber with an 84-µm diameter air-core was implemented as a low-volume absorption cell in a sensor configuration utilizing the simple and well-known Wavelength Modulation Spectroscopy (WMS) method. The fiber was filled with a mixture of methane (CH4) and carbon dioxide (CO2), and a simultaneous detection of both gases was demonstrated targeting their transitions at 3.334 µm and 1.574 µm, respectively. Due to excellent guidance properties of the fiber and low background noise, the proposed sensor reached a detection limit down to 24 parts-per-billion by volume for CH4 and 144 parts-per-million by volume for CO2. The obtained results confirm the suitability of ARHCF for efficient use in gas sensing applications for over a broad spectral range. Thanks to the demonstrated low loss, such fibers with lengths of over one meter can be used for increasing the laser-gas molecules interaction path, substituting bulk optics-based multipass cells, while delivering required flexibility, compactness, reliability and enhancement in the sensor’s sensitivity.


Sign in / Sign up

Export Citation Format

Share Document