scholarly journals Antiresonant Hollow-Core Fiber-Based Dual Gas Sensor for Detection of Methane and Carbon Dioxide in the Near- and Mid-Infrared Regions

Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3813 ◽  
Author(s):  
Piotr Jaworski ◽  
Paweł Kozioł ◽  
Karol Krzempek ◽  
Dakun Wu ◽  
Fei Yu ◽  
...  

In this work, we present for the first time a laser-based dual gas sensor utilizing a silica-based Antiresonant Hollow-Core Fiber (ARHCF) operating in the Near- and Mid-Infrared spectral region. A 1-m-long fiber with an 84-µm diameter air-core was implemented as a low-volume absorption cell in a sensor configuration utilizing the simple and well-known Wavelength Modulation Spectroscopy (WMS) method. The fiber was filled with a mixture of methane (CH4) and carbon dioxide (CO2), and a simultaneous detection of both gases was demonstrated targeting their transitions at 3.334 µm and 1.574 µm, respectively. Due to excellent guidance properties of the fiber and low background noise, the proposed sensor reached a detection limit down to 24 parts-per-billion by volume for CH4 and 144 parts-per-million by volume for CO2. The obtained results confirm the suitability of ARHCF for efficient use in gas sensing applications for over a broad spectral range. Thanks to the demonstrated low loss, such fibers with lengths of over one meter can be used for increasing the laser-gas molecules interaction path, substituting bulk optics-based multipass cells, while delivering required flexibility, compactness, reliability and enhancement in the sensor’s sensitivity.

Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3352 ◽  
Author(s):  
Karol Krzempek ◽  
Krzysztof Abramski ◽  
Michal Nikodem

In this paper, we demonstrate the laser-based gas sensing of methane near 3.3 µm inside hollow-core photonic crystal fibers. We exploit a novel anti-resonant Kagome-type hollow-core fiber with a large core diameter (more than 100 µm) which results in gas filling times of less than 10 s for 1.3-m-long fibers. Using a difference frequency generation source and chirped laser dispersion spectroscopy technique, methane sensing with sub-parts-per-million by volume detection limit is performed. The detection of ambient methane is also demonstrated. The presented results indicate the feasibility of using a hollow-core fiber for increasing the path-length and improving the sensitivity of the mid-infrared gas sensors.


2010 ◽  
Vol 161 ◽  
pp. 43-49 ◽  
Author(s):  
J.P. Carvalho ◽  
F. Magalhães ◽  
O. Frazão ◽  
J.L. Santos ◽  
F.M. Araújo ◽  
...  

Hollow-core photonic crystal glass fibers have a high potential for gas sensing applications, since large light-gas interaction lengths can be effectively attained. Nevertheless, in order to enhance effective diffusion of gas into the hollow-core fiber, multi-coupling gaps are often needed, which raise coupling loss issues that must be evaluated prior to the development of practical systems. In this paper, a study on the coupling losses dependence on lateral and axial gap misalignment for single-mode fiber and two different types of hollow-core photonic crystal glass fibers is carried out. In addition, an experimental technique on splicing these glass fibers is also described and some results are presented showing that low splice losses can be obtained with high reproducibility.


2019 ◽  
Vol 27 (25) ◽  
pp. 36350 ◽  
Author(s):  
Michal Nikodem ◽  
Grzegorz Gomółka ◽  
Mariusz Klimczak ◽  
Dariusz Pysz ◽  
Ryszard Buczyński

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3206 ◽  
Author(s):  
Hsiang-Chang Hsu ◽  
Tso-Sheng Hsieh ◽  
Tzu-Hsuan Huang ◽  
Liren Tsai ◽  
Chia-Chin Chiang

In this study, we applied a double-sided inductively coupled plasma (ICP) process to nanostructure long-period fiber grating (LPFG) in order to fabricate a double-notched LPFG (DNLPFG) sensor with a double-sided surface corrugated periodic grating. Using the sol-gel method, we also added thymol blue and ZnO to form a gas sensing layer, thus producing a DNLPFG CO2 gas sensor. The resulting sensor is the first double-sided etching sensor used to measure CO2. The experimental results showed that as the CO2 concentration increased, the transmission loss increased, and that the smaller the fiber diameter, the greater the sensitivity and the greater the change in transmission loss. When the diameter of the fiber was 32 μm (and the period was 570 μm) and the perfusion rate of CO2 gas was 15%, the maximum loss variation of up to 3.881 dB was achieved, while the sensitivity was 0.2146 dB/% and the linearity was 0.992. These results demonstrate that the DNLPG CO2 gas sensor is highly sensitive.


2018 ◽  
Vol 112 (16) ◽  
pp. 161107 ◽  
Author(s):  
F. Rothmayr ◽  
A. Pfenning ◽  
C. Kistner ◽  
J. Koeth ◽  
G. Knebl ◽  
...  

2019 ◽  
Vol 16 (8) ◽  
pp. 085107
Author(s):  
Wei Huang ◽  
Yulong Cui ◽  
Zhixian Li ◽  
Zhiyue Zhou ◽  
Yubin Chen ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (29) ◽  
pp. 17217-17227 ◽  
Author(s):  
Pritamkumar V. Shinde ◽  
Nanasaheb M. Shinde ◽  
Shoyebmohamad F. Shaikh ◽  
Damin Lee ◽  
Je Moon Yun ◽  
...  

Room-temperature (27 °C) synthesis and carbon dioxide (CO2)-gas-sensing applications of bismuth oxide (Bi2O3) nanosensors obtained via a direct and superfast chemical-bath-deposition method (CBD) with different surface areas and structures.


Sign in / Sign up

Export Citation Format

Share Document