Pulsed infrared laser activates intracellular signaling in NG108 cells

Author(s):  
Gleb P. Tolstykh ◽  
Anna V. Sedelnikova ◽  
Bennett L. Ibey ◽  
Ibtissam Echchgadda ◽  
Christopher M. Valdez
1997 ◽  
Vol 92 (2) ◽  
pp. 301-306
Author(s):  
S. GIORGIANNI ◽  
P. STOPPA ◽  
A. DE LORENZI

2018 ◽  
Author(s):  
Laura Riccetti ◽  
Samantha Sperduti ◽  
Clara Lazzaretti ◽  
Simonetta Tagliavini ◽  
Manuela Simoni ◽  
...  

2019 ◽  
Vol 106 (3) ◽  
pp. 250-260 ◽  
Author(s):  
DN Nandakumar ◽  
P Ramaswamy ◽  
C Prasad ◽  
D Srinivas ◽  
K Goswami

Purpose Glioblastoma cells create glutamate-rich tumor microenvironment, which initiates activation of ion channels and modulates downstream intracellular signaling. N-methyl-D-aspartate receptors (NMDARs; a type of glutamate receptors) have a high affinity for glutamate. The role of NMDAR activation on invasion of glioblastoma cells and the crosstalk with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is yet to be explored. Main methods LN18, U251MG, and patient-derived glioblastoma cells were stimulated with NMDA to activate NMDAR glutamate receptors. The role of NMDAR activation on invasion and migration and its crosstalk with AMPAR were evaluated. Invasion and migration of glioblastoma cells were investigated by in vitro trans-well Matrigel invasion and trans-well migration assays, respectively. Expression of NMDARs and AMPARs at transcript level was evaluated by quantitative real-time polymerase chain reaction. Results We determined that NMDA stimulation leads to enhanced invasion in LN18, U251MG, and patient-derived glioblastoma cells, whereas inhibition of NMDAR using MK-801, a non-competitive antagonist of the NMDAR, significantly decreased the invasive capacity. Concordant with these findings, migration was significantly augmented by NMDAR in both cell lines. Furthermore, NMDA stimulation upregulated the expression of GluN2 and GluA1 subunits at the transcript level. Conclusions This study demonstrated the previously unexplored role of NMDAR in invasion of glioblastoma cells. Furthermore, the expression of the GluN2 subunit of NMDAR and the differential overexpression of the GluA1 subunit of AMPAR in both cell lines provide a plausible rationale of crosstalk between these calcium-permeable subunits in the glutamate-rich microenvironment of glioblastoma.


2020 ◽  
Author(s):  
Guanjun Deng ◽  
Xinghua Peng ◽  
Zhihong Sun ◽  
Wei Zheng ◽  
Jia Yu ◽  
...  

Nature has always inspired robotic designs and concepts. It is conceivable that biomimic nanorobots will soon play a prominent role in medicine. In this paper, we developed a natural killer cell-mimic AIE nanoterminator (NK@AIEdots) by coating natural kill cell membrane on the AIE-active polymeric endoskeleton, PBPTV, a highly bright NIR-II AIE-active conjugated polymer. Owning to the AIE and soft-matter characteristics of PBPTV, as-prepared nanoterminator maintained the superior NIR-II brightness (quantum yield ~8%) and good biocompatibility. Besides, they could serve as tight junctions (TJs) modulator to trigger an intracellular signaling cascade, causing TJs disruption and actin cytoskeleton reorganization to form intercellular “green channel” to help themselves crossing Blood-Brain Barriers (BBB) silently. Furthermore, they could initiatively accumulate to glioblastoma cells in the complex brain matrix for high-contrast and through-skull tumor imaging. The tumor growth was also greatly inhibited by these nanoterminator under the NIR light illumination. As far as we known, The QY of PBPTV is the highest among the existing NIR-II luminescent conjugated polymers. Besides, the NK-cell biomimetic nanorobots will open new avenue for BBB-crossing delivery.


Sign in / Sign up

Export Citation Format

Share Document