intracellular signaling cascade
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 1)

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 121
Author(s):  
Seigo Usuki ◽  
Noriko Tamura ◽  
Tomohiro Tamura ◽  
Kohei Yuyama ◽  
Daisuke Mikami ◽  
...  

Histamines suppress epidermal keratinocyte differentiation. Previously, we reported that konjac ceramide (kCer) suppresses histamine-stimulated cell migration of HaCaT keratinocytes. kCer specifically binds to Nrp1 and does not interact with histamine receptors. The signaling mechanism of kCer in HaCaT cells is also controlled by an intracellular signaling cascade activated by the Sema3A-Nrp1 pathway. In the present study, we demonstrated that kCer treatment induced HaCaT keratinocyte differentiation after migration of immature cells. kCer-induced HaCaT cell differentiation was accompanied by some features of keratinocyte differentiation markers. kCer induced activating phosphorylation of p38MAPK and c-Fos, which increased the protein levels of involucrin that was the latter differentiation marker. In addition, we demonstrated that the effects of both kCer and histamines are regulated by an intracellular mechanism of Rac1 activation/RhoA inhibition downstream of the Sema3A/Nrp1 receptor and histamine/GPCR pathways. In summary, the effects of kCer on cell migration and cell differentiation are regulated by cascade crosstalk between downstream Nrp1 and histamine-GPCR pathways in HaCaT cells.


FACE ◽  
2021 ◽  
pp. 273250162110243
Author(s):  
Mikhail Pakvasa ◽  
Andrew B. Tucker ◽  
Timothy Shen ◽  
Tong-Chuan He ◽  
Russell R. Reid

Hedgehog signaling was discovered more than 40 years ago in experiments demonstrating that it is a fundamental mediator of limb development. Since that time, it has been shown to be important in development, homeostasis, and disease. The hedgehog pathway proceeds through a pathway highly conserved throughout animals beginning with the extracellular diffusion of hedgehog ligands, proceeding through an intracellular signaling cascade, and ending with the activation of specific target genes. A vast amount of research has been done elucidating hedgehog signaling mechanisms and regulation. This research has found a complex system of genetics and signaling that helps determine how organisms develop and function. This review provides an overview of what is known about hedgehog genetics and signaling, followed by an in-depth discussion of the role of hedgehog signaling in craniofacial development and carcinogenesis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Panagiota Bouti ◽  
Steven D. S. Webbers ◽  
Susanna C. Fagerholm ◽  
Ronen Alon ◽  
Markus Moser ◽  
...  

Neutrophils are the most prevalent leukocytes in the human body. They have a pivotal role in the innate immune response against invading bacterial and fungal pathogens, while recent emerging evidence also demonstrates their role in cancer progression and anti-tumor responses. The efficient execution of many neutrophil effector responses requires the presence of β2 integrins, in particular CD11a/CD18 or CD11b/CD18 heterodimers. Although extensively studied at the molecular level, the exact signaling cascades downstream of β2 integrins still remain to be fully elucidated. In this review, we focus mainly on inside-out and outside-in signaling of these two β2 integrin members expressed on neutrophils and describe differences between various neutrophil stimuli with respect to integrin activation, integrin ligand binding, and the pertinent differences between mouse and human studies. Last, we discuss how integrin signaling studies could be used to explore the therapeutic potential of targeting β2 integrins and the intracellular signaling cascade in neutrophils in several, among other, inflammatory conditions in which neutrophil activity should be dampened to mitigate disease.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Karlia Meitha ◽  
Yonadita Pramesti ◽  
Sony Suhandono

Reducing oxidative species to non- or less-reactive matter is the principal function of an antioxidant. Plant-based food is the main external source of antioxidants that helps protect our cells from oxidative damage. During postharvest storage and distribution, fruits and vegetables often increase ROS production that is quenched by depleting their antioxidant pools to protect their cells, which may leave none for humans. ROS are molecules produced from oxygen metabolism; some of the most widely analyzed ROS in plants are singlet oxygen, superoxide, hydrogen peroxide, and hydroxyl radicals. ROS concentration and lifetime are determined by the availability and composition of the antioxidant system that includes enzymatic components such as SOD, CAT, and APX and nonenzymatic components such as vitamins, polyphenols, and carotenoid. Depending on its concentration in the cell, ROS can either be harmful or beneficial. At high concentrations, ROS can damage various kinds of biomolecules such as lipids, proteins, DNA, and RNA, whereas at low or moderate concentrations, ROS can act as second messengers in the intracellular signaling cascade that mediates various plant responses. Novel postharvest methods are sought to maintain fruit and vegetable quality, including minimizing ROS while preserving their antioxidant content.


2020 ◽  
Vol 36 (11) ◽  
pp. 1344-1354 ◽  
Author(s):  
Hui Zhang ◽  
Sui-Bin Ma ◽  
Yong-Jing Gao ◽  
Jun-Ling Xing ◽  
Hang Xian ◽  
...  

AbstractPrevious studies have shown that CCL2 (C–C motif chemokine ligand 2) induces chronic pain, but the exact mechanisms are still unknown. Here, we established models to explore the potential mechanisms. Behavioral experiments revealed that an antagonist of extracellular signal-regulated kinase (ERK) inhibited not only CCL2-induced inflammatory pain, but also pain responses induced by complete Freund’s adjuvant. We posed the question of the intracellular signaling cascade involved. Subsequent experiments showed that CCL2 up-regulated the expression of phosphorylated ERK (pERK) and N-methyl D-aspartate receptor [NMDAR] subtype 2B (GluN2B); meanwhile, antagonists of CCR2 and ERK effectively reversed these phenomena. Whole-cell patch-clamp recordings revealed that CCL2 enhanced the NMDAR-induced currents via activating the pERK pathway, which was blocked by antagonists of GluN2B and ERK. In summary, we demonstrate that CCL2 directly interacts with CCR2 to enhance NMDAR-induced currents, eventually leading to inflammatory pain mainly through the CCL2–CCR2–pERK–GluN2B pathway.


2020 ◽  
Author(s):  
Guanjun Deng ◽  
Xinghua Peng ◽  
Zhihong Sun ◽  
Wei Zheng ◽  
Jia Yu ◽  
...  

Nature has always inspired robotic designs and concepts. It is conceivable that biomimic nanorobots will soon play a prominent role in medicine. In this paper, we developed a natural killer cell-mimic AIE nanoterminator (NK@AIEdots) by coating natural kill cell membrane on the AIE-active polymeric endoskeleton, PBPTV, a highly bright NIR-II AIE-active conjugated polymer. Owning to the AIE and soft-matter characteristics of PBPTV, as-prepared nanoterminator maintained the superior NIR-II brightness (quantum yield ~8%) and good biocompatibility. Besides, they could serve as tight junctions (TJs) modulator to trigger an intracellular signaling cascade, causing TJs disruption and actin cytoskeleton reorganization to form intercellular “green channel” to help themselves crossing Blood-Brain Barriers (BBB) silently. Furthermore, they could initiatively accumulate to glioblastoma cells in the complex brain matrix for high-contrast and through-skull tumor imaging. The tumor growth was also greatly inhibited by these nanoterminator under the NIR light illumination. As far as we known, The QY of PBPTV is the highest among the existing NIR-II luminescent conjugated polymers. Besides, the NK-cell biomimetic nanorobots will open new avenue for BBB-crossing delivery.


2020 ◽  
Author(s):  
Guanjun Deng ◽  
Xinghua Peng ◽  
Zhihong Sun ◽  
Wei Zheng ◽  
Jia Yu ◽  
...  

Nature has always inspired robotic designs and concepts. It is conceivable that biomimic nanorobots will soon play a prominent role in medicine. In this paper, we developed a natural killer cell-mimic AIE nanoterminator (NK@AIEdots) by coating natural kill cell membrane on the AIE-active polymeric endoskeleton, PBPTV, a highly bright NIR-II AIE-active conjugated polymer. Owning to the AIE and soft-matter characteristics of PBPTV, as-prepared nanoterminator maintained the superior NIR-II brightness (quantum yield ~8%) and good biocompatibility. Besides, they could serve as tight junctions (TJs) modulator to trigger an intracellular signaling cascade, causing TJs disruption and actin cytoskeleton reorganization to form intercellular “green channel” to help themselves crossing Blood-Brain Barriers (BBB) silently. Furthermore, they could initiatively accumulate to glioblastoma cells in the complex brain matrix for high-contrast and through-skull tumor imaging. The tumor growth was also greatly inhibited by these nanoterminator under the NIR light illumination. As far as we known, The QY of PBPTV is the highest among the existing NIR-II luminescent conjugated polymers. Besides, the NK-cell biomimetic nanorobots will open new avenue for BBB-crossing delivery.


2019 ◽  
Vol 11 (6) ◽  
pp. 293-300
Author(s):  
Nicholas R Anderson ◽  
Dooyoung Lee ◽  
Daniel A Hammer

Abstract Leukocyte adhesion is important for the proper functioning of the immune system. While leukocyte homing is mediated by adhesion receptors, the activation of these receptors is modulated by intracellular signaling molecules. In Leukocyte Adhesion Deficiency Type 3, the loss of the kindlin-3 prevents the activation of Leukocyte Function-associated Antigen-1 (LFA-1), which leads to a defect in adhesion, causing recurrent infections and bleeding disorders. Here, we use Integrated Signaling Adhesive Dynamics, a computer model of leukocyte rolling and adhesion combined with a simulated intracellular signaling cascade, to predict the response of T cells to depletion of kindlin-3. Our model predicts that cell adhesion is hypersensitive to the amount of kindlin-3 in the cell, while the rolling velocity is independent of kindlin-3 concentration. In addition, our simulation predicted that the time to stop, an important metric of adhesion, would increase with decreasing kindlin-3 expression. These predictions were confirmed experimentally in experiments using Jurkat cells with reduced expression of kindlin-3. These results suggest that Adhesive Dynamics is a versatile tool for quantifying adhesion in the immune response and predicting the effects of engineering cellular components.


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 449 ◽  
Author(s):  
Valentina Montagnani ◽  
Barbara Stecca

Hedgehog (HH) signaling is an evolutionarily conserved pathway that is crucial for growth and tissue patterning during embryonic development. It is mostly quiescent in the adult, where it regulates tissue homeostasis and stem cell behavior. Aberrant reactivation of HH signaling has been associated to several types of cancer, including those in the skin, brain, prostate, breast and hematological malignancies. Activation of the canonical HH signaling is triggered by binding of HH ligand to the twelve-transmembrane protein PATCHED. The binding releases the inhibition of the seven-transmembrane protein SMOOTHENED (SMO), leading to its phosphorylation and activation. Hence, SMO activates the transcriptional effectors of the HH signaling, that belong to the GLI family of transcription factors, acting through a not completely elucidated intracellular signaling cascade. Work from the last few years has shown that protein kinases phosphorylate several core components of the HH signaling, including SMO and the three GLI proteins, acting as powerful regulatory mechanisms to fine tune HH signaling activities. In this review, we will focus on the mechanistic influence of protein kinases on HH signaling transduction. We will also discuss the functional consequences of this regulation and the possible implications for cancer therapy.


Author(s):  
Tzyy-Yue Wong ◽  
Yu-Kai Tseng ◽  
Tung-Chen Yeh ◽  
Rong-Chang Jhong ◽  
Yue-Fang Wang ◽  
...  

Thought runs through the mind like blood runs through our body to keep us alive. Like the mind, the body does not stay inert and is in constant motion. Not a single cell in our body is left inert unless cell is under stress or dying. These scenarios are reflected upon when a person is sick, the person lies in bed with less movement; however, is active when the person is healthy. The topic of mechanical stimulation has emerged due to the increasing understanding of the physical stimulations we face each day. Further understanding of the mechanically-regulated mechanism can help us explore the pathological events in a disease. Here, we reviewed the role of sensory proteins in pathological events that are observed in cardiomyopathy, cancer, respiratory, renal, obesity, genetics, physical injury and bacterial infection. Taken together, sensory proteins are mechanically-activated which assist reception of external physical stimulation and convert into biochemical to trigger intracellular signaling cascade.


Sign in / Sign up

Export Citation Format

Share Document