La-doped BaSnO3 films for near- and mid-infrared plasmonic applications

Author(s):  
Heungsoo Kim ◽  
Nicholas A. Charipar ◽  
Raymond C. Y. Auyeung ◽  
Kristin M. Charipar ◽  
Alberto Piqué
Keyword(s):  
2020 ◽  
Vol 53 (36) ◽  
pp. 365103 ◽  
Author(s):  
Heungsoo Kim ◽  
Nicholas A Charipar ◽  
Alberto Piqué
Keyword(s):  

2005 ◽  
Vol 14 ◽  
pp. 337-342 ◽  
Author(s):  
M. Dolci ◽  
G. Valentini ◽  
O. Straniero ◽  
G. Di Rico ◽  
M. Ragni ◽  
...  

2019 ◽  
Vol 139 (9) ◽  
pp. 323-328
Author(s):  
Sho Ojima ◽  
Shigeru Fujimoto ◽  
Akihiro Morohoshi ◽  
Masaaki Ichiki
Keyword(s):  

2015 ◽  
Vol 30 (2) ◽  
pp. 171 ◽  
Author(s):  
CHEN Tao-Tao ◽  
LI Dan ◽  
JING Wen-Heng ◽  
FAN Yi-Qun ◽  
XING Wei-Hong

2018 ◽  
Author(s):  
Y. H. Kan ◽  
Changying Zhao ◽  
Zhuomin M. Zhang

2011 ◽  
Vol 28 (1) ◽  
pp. 33-48 ◽  
Author(s):  
Oto Hanuš ◽  
Václava Genčurová ◽  
Yunhai Zhang ◽  
Pavel Hering ◽  
Jaroslav Kopecký ◽  
...  

Milk acetone determination by the photometrical method after microdiffusion and via FT infra-red spectroscopyMilk acetone (AC) and betahydroxybutyrate (BHB) are important indicators of the energy metabolism of cows (ketosis occurrence) and an effective method for their determination, with reliable results, is of great importance. The goal of this work was to investigate the infrared method MIR-FT in terms of its calibration for milk AC and to develop a usable procedure. The microdiffusion photometric (485 nm; Spekol 11) method was used with salicylaldehyde as a reference (Re) and mid infrared spectroscopy FT (MIR-FT: Lactoscope FT-IR, Delta; MilkoScan FT 6000, M-Sc) as an indirect method. The acetone addition to milk had no recovery using MIR-FT (Delta). The reference AC set must have acceptable statistics for good MIR-FT calibration (M-Sc) and they were: 10.1 ± 9.74 at a geometric mean of 7.26 mg l-1, and a variation range from 1.98 to 33.66 mg l-1. The AC correlation between Re and MIR-FT (Delta) was low at 0.32 (P>0.05 but the Log AC relationship between Re and MIR-FT (M-Sc) was markedly better at 0.80 (P<0.01). The conversion of >10 mg l-1 as an AC subclinical ketosis limit could be > -0.80 (feedback 0.158 mmol l-1 = 9.25 mg l-1) and > -1.66. This could be important for ketosis monitoring (using M-Sc).


Sign in / Sign up

Export Citation Format

Share Document