Transparent and conductive La-doped barium stannate for optoelectronic applications: thin film chemical vapor deposition

2020 ◽  
Author(s):  
◽  
Tomas Murauskas
Author(s):  
M. E. Twigg ◽  
E. D. Richmond ◽  
J. G. Pellegrino

For heteroepitaxial systems, such as silicon on sapphire (SOS), microtwins occur in significant numbers and are thought to contribute to strain relief in the silicon thin film. The size of this contribution can be assessed from TEM measurements, of the differential volume fraction of microtwins, dV/dν (the derivative of the microtwin volume V with respect to the film volume ν), for SOS grown by both chemical vapor deposition (CVD) and molecular beam epitaxy (MBE).In a (001) silicon thin film subjected to compressive stress along the [100] axis , this stress can be relieved by four twinning systems: a/6[211]/( lll), a/6(21l]/(l1l), a/6[21l] /( l1l), and a/6(2ll)/(1ll).3 For the a/6[211]/(1ll) system, the glide of a single a/6[2ll] twinning partial dislocation draws the two halves of the crystal, separated by the microtwin, closer together by a/3.


1998 ◽  
Vol 508 ◽  
Author(s):  
A. Izumi ◽  
T. Ichise ◽  
H. Matsumura

AbstractSilicon nitride films prepared by low temperatures are widely applicable as gate insulator films of thin film transistors of liquid crystal displays. In this work, silicon nitride films are formed around 300 °C by deposition and direct nitridation methods in a catalytic chemical vapor deposition system. The properties of the silicon nitride films are investigated. It is found that, 1) the breakdown electric field is over 9MV/cm, 2) the surface state density is about 1011cm−2eV−1 are observed in the deposition films. These result shows the usefulness of the catalytic chemical vapor deposition silicon nitride films as gate insulator material for thin film transistors.


2011 ◽  
Vol 519 (14) ◽  
pp. 4479-4482 ◽  
Author(s):  
D.A. Spee ◽  
R. Bakker ◽  
C.H.M. van der Werf ◽  
M.J. van Steenbergen ◽  
J.K. Rath ◽  
...  

2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744101 ◽  
Author(s):  
Bitao Chen ◽  
Yingke Zhang ◽  
Qiuping Ouyang ◽  
Fei Chen ◽  
Xinghua Zhan ◽  
...  

SiNx thin film has been widely used in crystalline silicon solar cell production because of the good anti-reflection and passivation effect. We can effectively optimize the cells performance by plasma-enhanced chemical vapor deposition (PECVD) method to change deposition conditions such as temperature, gas flow ratio, etc. In this paper, we deposit a new layer of SiNx thin film on the basis of double-layers process. By changing the process parameters, the compactness of thin films is improved effectively. The NH3passivation technology is augmented in a creative way, which improves the minority carrier lifetime. In sight of this, a significant increase is generated in the photoelectric performance of crystalline silicon solar cell.


ChemInform ◽  
1989 ◽  
Vol 20 (37) ◽  
Author(s):  
K. KANEHORI ◽  
F. KIRINO ◽  
Y. ITO ◽  
K. MIYAUCHI ◽  
T. KUDO

2013 ◽  
Vol 52 (3R) ◽  
pp. 035501 ◽  
Author(s):  
Toshiyuki Kawaharamura ◽  
Kazuharu Mori ◽  
Hiroyuki Orita ◽  
Takahiro Shirahata ◽  
Shizuo Fujita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document