Pinning the plasmon resonance via epsilon-near-zero metamaterials

2021 ◽  
Author(s):  
Mohsin Habib ◽  
Daria Briukhanova ◽  
Humeyra Caglayan
ACS Photonics ◽  
2017 ◽  
Vol 4 (8) ◽  
pp. 1885-1892 ◽  
Author(s):  
Evan L. Runnerstrom ◽  
Kyle P. Kelley ◽  
Edward Sachet ◽  
Christopher T. Shelton ◽  
Jon-Paul Maria

2020 ◽  
Author(s):  
Justus Bohn ◽  
Ting-Shan Luk ◽  
Craig Tollerton ◽  
Sam Hutchins ◽  
Igal Brener ◽  
...  

Abstract Nonlinear optical devices and their implementation into modern nanophotonic architectures are constrained by their usually moderate nonlinear response. Recently, epsilon-near-zero (ENZ) materials have been found to have a strong optical nonlinearity, which can be enhanced through the use of cavities or nano-structuring. Here, we study the pump dependent properties of the plasmon resonance in the ENZ region in a thin layer of thin indium tin oxide (ITO). Exciting this mode using the Kretschmann-Raether configuration, we study reflection switching properties of a 60nm layer close to the resonant plasmon frequency. We demonstrate the thermal switching mechanism, which results in a shift in the plasmon resonance frequency of 20THz for a TM pump intensity of 75GW/cm2. For degenerate pump and probe frequencies, we highlight an additional coherent contribution, not previously isolated in ENZ nonlinear optics studies, which leads to an overall pump induced change in reflection from 1% to 45%.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Justus Bohn ◽  
Ting Shan Luk ◽  
Craig Tollerton ◽  
Sam W. Hutchings ◽  
Igal Brener ◽  
...  

A Correction to this paper has been published: https://doi.org/10.1038/s41467-021-22020-7


Nanophotonics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 3637-3644 ◽  
Author(s):  
Mohsin Habib ◽  
Daria Briukhanova ◽  
Nekhel Das ◽  
Bilge Can Yildiz ◽  
Humeyra Caglayan

AbstractLocalized plasmon resonance of a metal nanoantenna is determined by its size, shape and environment. Here, we diminish the size dependence by using multilayer metamaterials as epsilon-near-zero (ENZ) substrates. By means of the vanishing index of the substrate, we show that the spectral position of the plasmonic resonance becomes less sensitive to the characteristics of the plasmonic nanostructure and is controlled mostly by the substrate, and hence, it is pinned at a fixed narrow spectral range near the ENZ wavelength. Moreover, this plasmon wavelength can be adjusted by tuning the ENZ region of the substrate, for the same size nanodisk (ND) array. We also show that the difference in the phase of the scattered field by different size NDs at a certain distance is reduced when the substrate is changed to ENZ metamaterial. This provides effective control of the phase contribution of each nanostructure. Our results could be utilized to manipulate the resonance for advanced metasurfaces and plasmonic applications, especially when precise control of the plasmon resonance is required in flat optics designs. In addition, the pinning wavelength can be tuned optically, electrically and thermally by introducing active layers inside the hyperbolic metamaterial.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Justus Bohn ◽  
Ting Shan Luk ◽  
Craig Tollerton ◽  
Sam W. Hutchings ◽  
Igal Brener ◽  
...  

AbstractNonlinear optical devices and their implementation into modern nanophotonic architectures are constrained by their usually moderate nonlinear response. Recently, epsilon-near-zero (ENZ) materials have been found to have a strong optical nonlinearity, which can be enhanced through the use of cavities or nano-structuring. Here, we study the pump dependent properties of the plasmon resonance in the ENZ region in a thin layer of indium tin oxide (ITO). Exciting this mode using the Kretschmann-Raether configuration, we study reflection switching properties of a 60 nm layer close to the resonant plasmon frequency. We demonstrate a thermal switching mechanism, which results in a shift in the plasmon resonance frequency of 20 THz for a TM pump intensity of 70 GW cm−2. For degenerate pump and probe frequencies, we highlight an additional two-beam coupling contribution, not previously isolated in ENZ nonlinear optics studies, which leads to an overall pump induced change in reflection from 1% to 45%.


2020 ◽  
pp. 44-49
Author(s):  
I. N. Pavlov

Two optical methods, namely surface plasmon resonance imaging and frustrated total internal reflection, are described in the paper in terms of comparing their sensitivity to change of refractive index of a thin boundary layer of an investigated medium. It is shown that, despite the fact that the theoretically calculated sensitivity is higher for the frustrated total internal reflection method, and the fact that usually in practice the surface plasmon resonance method, on the contrary, is considered more sensitive, under the same experimental conditions both methods show a similar result.


2010 ◽  
Vol 130 (7) ◽  
pp. 269-274 ◽  
Author(s):  
Takeshi Onodera ◽  
Takuzo Shimizu ◽  
Norio Miura ◽  
Kiyoshi Matsumoto ◽  
Kiyoshi Toko

Sign in / Sign up

Export Citation Format

Share Document