Media noise suppression by multimodal optical disc readout

Author(s):  
Kimihiro Saito
Author(s):  
Takao Suzuki ◽  
Hossein Nuri

For future high density magneto-optical recording materials, a Bi-substituted garnet film ((BiDy)3(FeGa)5O12) is an attractive candidate since it has strong magneto-optic effect at short wavelengths less than 600 nm. The signal in read back performance at 500 nm using a garnet film can be an order of magnitude higher than a current rare earth-transition metal amorphous film. However, the granularity and surface roughness of such crystalline garnet films are the key to control for minimizing media noise.We have demonstrated a new technique to fabricate a garnet film which has much smaller grain size and smoother surfaces than those annealed in a conventional oven. This method employs a high ramp-up rate annealing (Γ = 50 ~ 100 C/s) in nitrogen atmosphere. Fig.1 shows a typical microstruture of a Bi-susbtituted garnet film deposited by r.f. sputtering and then subsequently crystallized by a rapid thermal annealing technique at Γ = 50 C/s at 650 °C for 2 min. The structure is a single phase of garnet, and a grain size is about 300A.


2000 ◽  
Author(s):  
Edward Awh ◽  
John Serences ◽  
Kelsey Libner ◽  
Michi Matsukura

2019 ◽  
Vol 1 (2) ◽  
pp. 14-19
Author(s):  
Sui Ping Lee ◽  
Yee Kit Chan ◽  
Tien Sze Lim

Accurate interpretation of interferometric image requires an extremely challenging task based on actual phase reconstruction for incomplete noise observation. In spite of the establishment of comprehensive solutions, until now, a guaranteed means of solution method is yet to exist. The initially observed interferometric image is formed by 2π-periodic phase image that wrapped within (-π, π]. Such inverse problem is further corrupted by noise distortion and leads to the degradation of interferometric image. In order to overcome this, an effective algorithm that enables noise suppression and absolute phase reconstruction of interferometric phase image is proposed. The proposed method incorporates an improved order statistical filter that is able to adjust or vary on its filtering rate by adapting to phase noise level of relevant interferometric image. Performance of proposed method is evaluated and compared with other existing phase estimation algorithms. The comparison is based on a series of computer simulated and real interferometric data images. The experiment results illustrate the effectiveness and competency of the proposed method.


2018 ◽  
Vol 138 (5) ◽  
pp. 593-602 ◽  
Author(s):  
Arata Kawamura ◽  
Takahiro Yamashita ◽  
Youji Iiguni

2020 ◽  
Vol E103.B (9) ◽  
pp. 899-902
Author(s):  
Sho MUROGA ◽  
Motoshi TANAKA ◽  
Takefumi YOSHIKAWA ◽  
Yasushi ENDO

Sign in / Sign up

Export Citation Format

Share Document