amorphous film
Recently Published Documents


TOTAL DOCUMENTS

352
(FIVE YEARS 28)

H-INDEX

22
(FIVE YEARS 3)

Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1411
Author(s):  
Alexandr Stupakov ◽  
Tomas Kocourek ◽  
Natalia Nepomniashchaia ◽  
Marina Tyunina ◽  
Alexandr Dejneka

A significant decrease in resistivity by 55% under blue lighting with ~0.4 J·mm−2 energy density is demonstrated in amorphous film of metal-insulator NdNiO3 at room temperature. This large negative photoresistivity contrasts with a small positive photoresistivity of 8% in epitaxial NdNiO3 film under the same illumination conditions. The magnitude of the photoresistivity rises with the increasing power density or decreasing wavelength of light. By combining the analysis of the observed photoresistive effect with optical absorption and the resistivity of the films as a function of temperature, it is shown that photo-stimulated heating determines the photoresistivity in both types of films. Because amorphous films can be easily grown on a wide range of substrates, the demonstrated large photo(thermo)resistivity in such films is attractive for potential applications, e.g., thermal photodetectors and thermistors.


2021 ◽  
Vol 2011 (1) ◽  
pp. 012102
Author(s):  
Chao Li ◽  
Haili Song ◽  
Yuanyuan Zhang ◽  
Lei Miao ◽  
Ruijuan Qi ◽  
...  

2021 ◽  
Author(s):  
Aleksei Kononov ◽  
Rene Alejandro Castro ◽  
Yuta Saito ◽  
Paul Fons ◽  
Gennady Bordovsky ◽  
...  

Abstract Sb2Te3 is an end-point of the GeTe-Sb2Te3 quasibinary tie-line that represents phase-change alloys widely used in optical and non-volatile phase-change memory devices. In the crystalline form it is also a prototypical topological insulator with a layered structure where covalently bonded quintuple layers are held together by weak van der Waals forces. One of the ways to fabricate a crystalline phase is solid-state crystallisation of an amorphous film, whereby the three-dimensional (3D) structure relaxes to the two-dimensional (2D) crystalline phase. The mechanism of the 3D-2D transformation remains unclear. In this work, we performed a study of relaxation processes in thin Sb2Te3 films in both amorphous and crystalline phases. We found that both phases possess two kinds of relaxators (type I and type II), where the type I fragments are identical in the two phases, while the relaxation of type II fragments are shifted to lower temperature in the amorphous phases. The activation energies of the associated relaxation processes and the values of the Havriliak-Negami parameters were determined. The differences between the relaxation processes in the two phases are discussed. The obtained result will contribute to better understanding of the 3D-2D transformation during the crystallisation of van der Waals solids.


Author(s):  
Cho Long Kim ◽  
Jinhoon Jeong ◽  
Ho Jin Jang ◽  
Kyung Hyung Lee ◽  
Seoung-Tae Kim ◽  
...  

Purely organic phosphorescent emitters have been developed with the incorporation of alkyl substituents into the N-phenylphenoselenazine core. The new emitter displayed efficient phosphorescence in amorphous film and featured pure phosphorescence...


2020 ◽  
Author(s):  
Qiu-Shi Ma ◽  
Cheng-Wei Ju ◽  
Ruihua Pu ◽  
Wenjie Zhang ◽  
Xian Lin ◽  
...  

<p>The aggregation of Perylene Diimide (PDI) and its derivatives strongly depends on the molecular structure, and therefore has great impact on the excited states. By regulating the molecular stacking such as monomer, dimer, J- and/or H-aggregate, the formation of different excited states is adjustable and controllable. In this study, we have synthesized two kinds of PDI derivatives - undecane-substituted PDI (PDI-1) and diisopropylphenyl-substituted PDI (PDI-2), and the films are fabricated with spin-coating method. By employing photoluminescence (PL), time-resolved photoluminescence (TRPL) and transient absorption (TA) spectroscopy, the excited-state dynamics of two PDI amorphous films have been investigated systematically. The result reveals that both films have formed excimer after photoexcitation mainly due to the stronger electronic coupling among molecule aggregate in the amorphous film. It should be noted that the excited state dynamics in PDI-2 shows a singlet fission like process, which is evidenced by the appearance of triplet state absorption. This study provides the dynamics of excited state in amorphous PDI films, and pave the way for better understanding and adjusting the excited state of amorphous films. </p>


2020 ◽  
Author(s):  
Qiu-Shi Ma ◽  
Cheng-Wei Ju ◽  
Ruihua Pu ◽  
Wenjie Zhang ◽  
Xian Lin ◽  
...  

<p>The aggregation of Perylene Diimide (PDI) and its derivatives strongly depends on the molecular structure, and therefore has great impact on the excited states. By regulating the molecular stacking such as monomer, dimer, J- and/or H-aggregate, the formation of different excited states is adjustable and controllable. In this study, we have synthesized two kinds of PDI derivatives - undecane-substituted PDI (PDI-1) and diisopropylphenyl-substituted PDI (PDI-2), and the films are fabricated with spin-coating method. By employing photoluminescence (PL), time-resolved photoluminescence (TRPL) and transient absorption (TA) spectroscopy, the excited-state dynamics of two PDI amorphous films have been investigated systematically. The result reveals that both films have formed excimer after photoexcitation mainly due to the stronger electronic coupling among molecule aggregate in the amorphous film. It should be noted that the excited state dynamics in PDI-2 shows a singlet fission like process, which is evidenced by the appearance of triplet state absorption. This study provides the dynamics of excited state in amorphous PDI films, and pave the way for better understanding and adjusting the excited state of amorphous films. </p>


Sign in / Sign up

Export Citation Format

Share Document