Novel magneto-optical recording materials: Bi-substituted garnet films

Author(s):  
Takao Suzuki ◽  
Hossein Nuri

For future high density magneto-optical recording materials, a Bi-substituted garnet film ((BiDy)3(FeGa)5O12) is an attractive candidate since it has strong magneto-optic effect at short wavelengths less than 600 nm. The signal in read back performance at 500 nm using a garnet film can be an order of magnitude higher than a current rare earth-transition metal amorphous film. However, the granularity and surface roughness of such crystalline garnet films are the key to control for minimizing media noise.We have demonstrated a new technique to fabricate a garnet film which has much smaller grain size and smoother surfaces than those annealed in a conventional oven. This method employs a high ramp-up rate annealing (Γ = 50 ~ 100 C/s) in nitrogen atmosphere. Fig.1 shows a typical microstruture of a Bi-susbtituted garnet film deposited by r.f. sputtering and then subsequently crystallized by a rapid thermal annealing technique at Γ = 50 C/s at 650 °C for 2 min. The structure is a single phase of garnet, and a grain size is about 300A.

1998 ◽  
Vol 517 ◽  
Author(s):  
Yasuyuki Okamura ◽  
Sadahiko Yamamoto

AbstractWe report the selected-area epitaxy of rare-earth iron garnet crystalline and amorphous straight ridge patterns, from 4μm to 8μm in width, deposited on Gd3Ga5O12 single crystal substrates. These samples were fabricated via a sputter epitaxial method on substrates that were partially etched by ion-beam bombardment. The strip pattern direction has given the considerable influence on the crystal-graphic formation of the sidewall of the grown ridge. The ridge shapes were similar to results that have been reported for the dissolution forms of garnet crystals in phosphoric acid and the facet of garnet crystals grown from flux. Furthermore, we have successfully grown both an epitaxial garnet film onto an amorphous film and an amorphous straight ridge with a triangular shape surrounded by crystal.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian Wang ◽  
Asuka Miura ◽  
Rajkumar Modak ◽  
Yukiko K. Takahashi ◽  
Ken-ichi Uchida

AbstractThe introduction of spin caloritronics into thermoelectric conversion has paved a new path for versatile energy harvesting and heat sensing technologies. In particular, thermoelectric generation based on the anomalous Nernst effect (ANE) is an appealing approach as it shows considerable potential to realize efficient, large-area, and flexible use of heat energy. To make ANE applications viable, not only the improvement of thermoelectric performance but also the simplification of device structures is essential. Here, we demonstrate the construction of an anomalous Nernst thermopile with a substantially enhanced thermoelectric output and simple structure comprising a single ferromagnetic material. These improvements are achieved by combining the ANE with the magneto-optical recording technique called all-optical helicity-dependent switching of magnetization. Our thermopile consists only of Co/Pt multilayer wires arranged in a zigzag configuration, which simplifies microfabrication processes. When the out-of-plane magnetization of the neighboring wires is reversed alternately by local illumination with circularly polarized light, the ANE-induced voltage in the thermopile shows an order of magnitude enhancement, confirming the concept of a magneto-optically designed anomalous Nernst thermopile. The sign of the enhanced ANE-induced voltage can be controlled reversibly by changing the light polarization. The engineering concept demonstrated here promotes effective utilization of the characteristics of the ANE and will contribute to realizing its thermoelectric applications.


1997 ◽  
Vol 12 (11) ◽  
pp. 1967-1974 ◽  
Author(s):  
Kazuaki Kuroda ◽  
Mark A. Barton ◽  
Atsushi Onae ◽  
Yukinobu Miki

We propose the application of a new technique, the X pendulum, to determine the Newtonian gravitational constant G. We evaluate the likely experimental errors for configurations realizable with existing technologies and show that improvement of the accuracy by an order of magnitude or more is possible.


1988 ◽  
Vol 63 (8) ◽  
pp. 3639-3641 ◽  
Author(s):  
K. Shono ◽  
H. Kano ◽  
N. Koshino ◽  
S. Ogawa

2019 ◽  
Vol 45 (3) ◽  
pp. 3414-3418
Author(s):  
Qianwen Guo ◽  
Hui Zheng ◽  
Liang Zheng ◽  
Peng Zheng ◽  
Qiong Wu

1969 ◽  
Vol 8 (54) ◽  
pp. 427-440 ◽  
Author(s):  
R. Perla

AbstractModified versions ofin situstrength tests previously applied to metamorphosed snow were developed to measure the mechanical properties of newly fallen snow during storm periods. A large drop-cone penetrometer, protected from the wind by an aluminum shell, was used to determine snow “hardness”. A lightweight model of the Haefeli ram penetrometer measured “ram numbers”. Shear strengths were obtained from large, light-weight frames. Some preliminary tests were made with a shear vane driven by a torque wrench. A new technique was devised for measuring tensile strength whereby a cantilever beam of snow is undercut until it fails under its own weight. Comparisons between the cantilever test and the shear-frame test show high ratios for tensile to shear strength. Cantilever strength plotted against density shows an order of magnitude variation in strength at all densities.


2014 ◽  
Vol 2 (2) ◽  
pp. 1047-1092 ◽  
Author(s):  
M. Attal ◽  
S. M. Mudd ◽  
M. D. Hurst ◽  
B. Weinman ◽  
K. Yoo ◽  
...  

Abstract. The characteristics of the sediment transported by rivers (e.g., sediment flux, grain size distribution – GSD –) dictate whether rivers aggrade or erode their substrate. They also condition the architecture and properties of sedimentary successions in basins. In this study, we investigate the relationship between landscape steepness and the grain size of hillslope and fluvial sediments. The study area is located within the Feather River Basin in Northern California, and studied basins are underlain exclusively by tonalite lithology. Erosion rates in the study area vary over an order of magnitude, from > 250 mm ka−1 in the Feather River canyon to < 15 mm ka−1 on an adjacent low relief plateau. We find that the coarseness of hillslope sediment increases with increasing hillslope steepness and erosion rates. We hypothesize that, in our soil samples, the measured ten-fold increase in D50 and doubling of the amount of fragments larger than 1 mm when slope increases from 0.38 to 0.83 m m−1 is due to a decrease in the residence time of rock fragments, causing particles to be exposed for shorter periods of time to processes that can reduce grain size. For slopes in excess of 0.7 m m−1, landslides and scree cones supply much coarser sediment to rivers, with D50 and D84 more than one order of magnitude larger than in soils. In the tributary basins of the Feather River, a prominent break in slope developed in response to the rapid incision of the Feather River. Downstream of the break in slope, fluvial sediment grain size increases, due to an increase in flow competence (mostly driven by channel steepening) but also by a change in sediment source and in sediment dynamics: on the plateau upstream of the break in slope, rivers transport easily mobilised fine-grained sediment derived exclusively from soils. Downstream of the break in slope, mass wasting processes supply a wide range of grain sizes that rivers entrain selectively, depending on the competence of their flow. Our results also suggest that in this study site, hillslopes respond rapidly to an increase in the rate of base-level lowering compared to rivers.


2012 ◽  
Vol 583 ◽  
pp. 125-129 ◽  
Author(s):  
Xiao Ting Li ◽  
Hui Li ◽  
Gang Liu

A new unsymmetrical photochromic diarylethene, 1-(3,5-dimethyl-4-isoxazolyl)-2-[2-methyl-5-(4-formylphenyl)-3- thienyl]perfluorocyclopentene(1a) were synthesized, and its properties, such as photochromism and fluorescence properties, were investigated in detail. The results showed that this compound had good thermal stability and exhibited reversible photochromism, changing from colorless to darkred after irradiation with UV light both in solution and in PMMA amorphous film, the maxima absorption of its closed-ring isomer 1b are 529 nm and 541 nm respectively. The open-ring isomer of the diarylethene 1a exhibited relatively strong fluorescence at 492 nm in hexane solution (2 × 10-5 mol/L) when excited at 418 nm. The fluorescence intensity decreased along with the photochromism upon irradiation with 297 nm light. This new photochromic system also exhibited remarkable optical storage character.


2020 ◽  
Vol 999 ◽  
pp. 13-20
Author(s):  
Qing Wu Zhang ◽  
Tian Fang ◽  
Hao Lu ◽  
Wei Wang ◽  
Qing Qing Zhang ◽  
...  

Protein gel of soy was formed immediately during polymerization of aniline initiated by certain amount of FeCl3. In order to obtain iron-doped carbon material, this composite was then carbonized at 700°C under nitrogen atmosphere for 5h. SEM, FT-IR, XRD, and isothermal desorption/adsorption technologies were employed to characterize morphology and structure of the material. Electrical capacitance of iron-doped carbon materials and performance of a prototype supercapacitor based on the material as its electrodes were measured by cyclic voltammetry, chronopotentiometry, and A.C. impedance respectively. Results show that morphology of as-obtained material is porous and hierachical, specific surface area of the material is 232.1m2/g, and specific capacitance of the material can reach 475.2F/g in 6 M KOH aqueous solution. Energy density and power density of the cell is 2.1Wh/kg and 2.0kW/kg, respectively. Capacity retention of the device is 100% after 5000 cycles at a current density of 2A/g. The above studies imply that this original iron-doped carbon material will have a good potential application in field of energy storage.


Sign in / Sign up

Export Citation Format

Share Document