Laboratory phase-contrast CT for 3D tumor resection margin assessment

Author(s):  
William Twengström ◽  
Carlos Fernandez Moro ◽  
Jenny Romell ◽  
Jakob C. Larsson ◽  
Ernesto Sparrelid ◽  
...  
Radiology ◽  
2021 ◽  
pp. 203967
Author(s):  
Wen-Juan Lv ◽  
Xin-Yan Zhao ◽  
Dou-Dou Hu ◽  
Xiao-Hong Xin ◽  
Li-Li Qin ◽  
...  

2019 ◽  
Vol 47 (9) ◽  
pp. e774-e781 ◽  
Author(s):  
Ludovic Broche ◽  
Pauline Pisa ◽  
Liisa Porra ◽  
Loïc Degrugilliers ◽  
Alberto Bravin ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. e0210291 ◽  
Author(s):  
Karin Hellerhoff ◽  
Lorenz Birnbacher ◽  
Anikó Sztrókay-Gaul ◽  
Susanne Grandl ◽  
Sigrid Auweter ◽  
...  

2015 ◽  
Vol 22 (6) ◽  
pp. 1509-1523 ◽  
Author(s):  
Yakov I. Nesterets ◽  
Timur E. Gureyev ◽  
Sheridan C. Mayo ◽  
Andrew W. Stevenson ◽  
Darren Thompson ◽  
...  

Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low-dose high-sensitivity three-dimensional mammographic phase-contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X-ray energy, source size, detector resolution, sample-to-detector distance, scanning and data processing strategies in the case of propagation-based phase-contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast-tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 µm, revealed the presence of propagation-based phase contrast and demonstrated significant improvement of the quality of phase-contrast CT imaging compared with conventional (absorption-based) CT, at medically acceptable radiation doses.


Sign in / Sign up

Export Citation Format

Share Document