Modes recognition in high-power fiber laser by convolutional neural networks

Author(s):  
Jun Li ◽  
Hongye Li ◽  
Xiaofan Zhao ◽  
Zefeng Wang
Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5831
Author(s):  
Benedikt Adelmann ◽  
Ralf Hellmann

In this contribution, we compare basic neural networks with convolutional neural networks for cut failure classification during fiber laser cutting. The experiments are performed by cutting thin electrical sheets with a 500 W single-mode fiber laser while taking coaxial camera images for the classification. The quality is grouped in the categories good cut, cuts with burr formation and cut interruptions. Indeed, our results reveal that both cut failures can be detected with one system. Independent of the neural network design and size, a minimum classification accuracy of 92.8% is achieved, which could be increased with more complex networks to 95.8%. Thus, convolutional neural networks reveal a slight performance advantage over basic neural networks, which yet is accompanied by a higher calculation time, which nevertheless is still below 2 ms. In a separated examination, cut interruptions can be detected with much higher accuracy as compared to burr formation. Overall, the results reveal the possibility to detect burr formations and cut interruptions during laser cutting simultaneously with high accuracy, as being desirable for industrial applications.


2008 ◽  
Author(s):  
Naoyuki Matsumoto ◽  
Yousuke Kawahito ◽  
Masami Mizutani ◽  
Seiji Katayama

2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


Author(s):  
Edgar Medina ◽  
Roberto Campos ◽  
Jose Gabriel R. C. Gomes ◽  
Mariane R. Petraglia ◽  
Antonio Petraglia

Sign in / Sign up

Export Citation Format

Share Document