Estimation of wind turbulence parameters from spectra of the vertical wind velocity measured by a pulsed coherent Doppler lidar

2021 ◽  
Author(s):  
Igor N. Smalikho ◽  
Viktor Banakh ◽  
Artem Sherstobitov ◽  
Andrey Falits
2016 ◽  
Vol 33 (9) ◽  
pp. 1949-1966 ◽  
Author(s):  
Makoto Aoki ◽  
Hironori Iwai ◽  
Katsuhiro Nakagawa ◽  
Shoken Ishii ◽  
Kohei Mizutani

AbstractRainfall velocity, raindrop size distribution (DSD), and vertical wind velocity were simultaneously observed with 2.05- and 1.54-μm coherent Doppler lidars during convective and stratiform rain events. A retrieval method is based on identifying two separate spectra from the convolution of the aerosol and precipitation Doppler lidar spectra. The vertical wind velocity was retrieved from the aerosol spectrum peak and then the terminal rainfall velocity corrected by the vertical air motion from the precipitation spectrum peak was obtained. The DSD was derived from the precipitation spectrum using the relationship between the raindrop size and the terminal rainfall velocity. A comparison of the 1-min-averaged rainfall velocity from Doppler lidar measurements at a minimum range and that from a collocated ground-based optical disdrometer revealed high correlation coefficients of over 0.89 for both convective and stratiform rain events. The 1-min-averaged DSDs retrieved from the Doppler lidar spectrum using parametric and nonparametric methods are also in good agreement with those measured with the optical disdrometer with a correlation coefficient of over 0.80 for all rain events. To retrieve the DSD, the parametric method assumes a mathematical function for the DSD and the nonparametric method computes the direct deconvolution of the measured Doppler lidar spectrum without assuming a DSD function. It is confirmed that the Doppler lidar can retrieve the rainfall velocity and DSD during relatively heavy rain, whereas the ratio of valid data significantly decreases in light rain events because it is extremely difficult to separate the overlapping rain and aerosol peaks in the Doppler spectrum.


2019 ◽  
Vol 11 (18) ◽  
pp. 2115 ◽  
Author(s):  
Banakh ◽  
Smalikho

In this paper, a method is proposed to estimate wind turbulence parameters using measurements recorded by a conically scanning coherent Doppler lidar with two different elevation angles. This methodology helps determine the anisotropy of the spatial correlation of wind velocity turbulent fluctuations. The proposed method was tested in a field experiment with a Stream Line lidar (Halo Photonics, Brockamin, Worcester, United Kingdom) under stable temperature stratification conditions in the atmospheric boundary layer. The results show that the studied anisotropy coefficient in a stable boundary layer may be up to three or larger.


1981 ◽  
Vol 20 (12) ◽  
pp. 2048 ◽  
Author(s):  
F. Congeduti ◽  
G. Fiocco ◽  
A. Adriani ◽  
C. Guarrella

Sign in / Sign up

Export Citation Format

Share Document