stable temperature
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 51)

H-INDEX

17
(FIVE YEARS 4)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 640
Author(s):  
Yi Lu ◽  
Juan Chen ◽  
Jianxing Li ◽  
Wenjing Xu

In high-power microwave applications, the electromagnetic-thermal effect of frequency selective surface (FSS) cannot be ignored. In this paper, the electromagnetic-thermal coupling effects of cross-slot FSS were studied. We used an equivalent circuit method and CST software to analyze the electromagnetic characteristics of cross-slot FSS. Then, we used multi-field simulation software COMSOL Multiphysics to study the thermal effect of the FSSs. To verify the simulation results, we used a horn antenna with a power of 20 W to radiate the FSSs and obtain the stable temperature distribution of the FSSs. By using simulations and experiments, it is found that the maximum temperature of the cross-slot FSS appears in the middle of the cross slot. It is also found that the FSS with a narrow slot has severer thermal effect than that with a wide slot. In addition, the effects of different incident angles on the temperature variation of FSS under TE and TM polarization were also studied. It is found that in TE polarization, with the increase in incident angle, the maximum stable temperature of FSS increases gradually. In TM polarization, with the increase in incident angle, the maximum stable temperature of FSS decreases gradually.


2022 ◽  
pp. 2110995
Author(s):  
Jenner H. L. Ngai ◽  
John Polena ◽  
Daniel Afzal ◽  
Xiguang Gao ◽  
Mihir Kapadia ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Benjamín Valdez-Salas ◽  
Ernesto Beltrán-Partida

Ti6Al4V alloys are the primary materials used for clinical bone regeneration and restoration; however, they are substantially susceptible to biomaterial-related infections. Therefore, in the present work, we applied a controllable and stable oxidative nanopatterning strategy by applying H3PO4, a weaker dissociating acid, as a substitute for H2SO4 in the classical piranha reaction. The results suggest that our method acted as a concomitant platform to develop reproducible diameter-controlled TiO2 nanopores (NPs). Interestingly, our procedure illustrated stable temperature reactions without exothermic responses since the addition of mixture preparation to the nanopatterning reactions. The reactions were carried out for 30 min (NP14), 1 h (NP7), and 2 h (NP36), suggesting the formation of a thin nanopore layer as observed by Raman spectroscopy. Moreover, the antimicrobial activity revealed that NP7 could disrupt active microbial colonization for 2 h and 6 h. The phenotype configuration strikingly showed that NP7 does not alter the cell morphology, thus proposing a disruptive adhesion pathway instead of cellular lysis. Furthermore, preliminary assays suggested an early promoted osteoblasts viability in comparison to the control material. Our work opens a new path for the rationale design of nanobiomaterials with “intelligent surfaces” capable of decreasing microbial adhesion, increasing osteoblast viability, and being scalable for industrial transfer.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chao Sun ◽  
Xiaofeng Yang ◽  
Sirui Xie ◽  
Ziqin Zhou ◽  
Guoliang Yu ◽  
...  

Background. Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional gastrointestinal disorder that severely affects patients’ life. Moxibustion is believed to be an effective way to treat IBS-D. However, the therapeutic effects and the underlying mechanisms in symptom management of IBS-D by different moxibustion therapies remain unclear. Methods. IBS-D model rats were divided into groups and treated with ginger-partitioned moxibustion (GPM), mild moxibustion (MM), and laser moxibustion (LM) at a temperature of 43°C, respectively. The temperature curves of acupoints were recorded during interventions. The therapeutic effects were evaluated on the basis of general condition, stool, and hematoxylin-eosin staining of the colon tissue. Moreover, the expression of transient receptor potential vanilloid 1 (TRPV1) receptors in both acupoint tissue and colon tissue was analyzed by immunohistochemistry. Results. After moxibustion treatment, the symptoms were improved. The expression of TRPV1 was increased in acupoint tissue and decreased in colon tissue. GPM and MM showed a more significant influence on IBS-D rats compared with LM. The temperature profile of GPM and MM was wave-like, while LM had an almost stable temperature curve. Conclusion. GPM, MM, and LM could improve the symptoms in IBS-D rats. Moxibustion might activate TRPV1 channels in the acupoint tissue and induce acupoint functions, which in turn inhibit the pathological activation state of the colon’s TRPV1, followed by improvements in abdominal pain and diarrheal symptoms. LM with stable temperature might lead to the desensitization of TRPV1 receptors and the tolerance of acupoint. GPM and MM provided dynamic and repetitive thermal stimulations that perhaps induced acupoint sensitization to increase efficacy. Therefore, dynamic and repetitive thermal stimulation is recommended in the application of moxibustion.


2021 ◽  
Vol 6 (8) ◽  
Author(s):  
Daisuke Noto ◽  
Tomomi Terada ◽  
Takatoshi Yanagisawa ◽  
Takehiro Miyagoshi ◽  
Yuji Tasaka

Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 165
Author(s):  
Xun Wei Chia ◽  
Poh Kiat Ng ◽  
Robert Jeyakumar Nathan ◽  
Jian Ai Yeow ◽  
Way Soong Lim ◽  
...  

Innovations in food manufacturing support the agenda for sustainable development goal 9 (SDG9) on industry, innovation and infrastructure. Pursuant to this goal, this study aims to develop an automated multi-spit lamb rotisserie machine that potentially improves the lamb-roasting productivity for small and medium enterprises (SMEs). The conceptualisation involved patents, scholarly literature and product reviews of lamb-roasting devices. The design and analysis are performed using Autodesk Inventor 2019. A scaled-down prototype is developed and tested with (1) roasting output, (2) roasting time and (3) temperature stability tests. The data for test (1) are analysed by comparing the means between control and experimental groups. The data for tests (2) and (3) are analysed using the t-test and Mann–Whitney U test, respectively. Significant differences are observed in tests (1) and (2), with outcomes being in favour of the proposed invention. The prototype cooks 92.27% faster with 700% more meat than a regular lamb roaster. It also cooks at a stable temperature. The cost analysis indicated that this invention could be sold at USD 278 if mass-produced. The design is structurally simple, inexpensive and easy to manufacture, allowing SMEs that rely on traditional spit-based machines to enhance their ability in producing roast lamb.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2316
Author(s):  
Daniel Mota-Rojas ◽  
Dehua Wang ◽  
Cristiane Gonçalves Titto ◽  
Jocelyn Gómez-Prado ◽  
Verónica Carvajal-de la Fuente ◽  
...  

Body-temperature elevations are multifactorial in origin and classified as hyperthermia as a rise in temperature due to alterations in the thermoregulation mechanism; the body loses the ability to control or regulate body temperature. In contrast, fever is a controlled state, since the body adjusts its stable temperature range to increase body temperature without losing the thermoregulation capacity. Fever refers to an acute phase response that confers a survival benefit on the body, raising core body temperature during infection or systemic inflammation processes to reduce the survival and proliferation of infectious pathogens by altering temperature, restriction of essential nutrients, and the activation of an immune reaction. However, once the infection resolves, the febrile response must be tightly regulated to avoid excessive tissue damage. During fever, neurological, endocrine, immunological, and metabolic changes occur that cause an increase in the stable temperature range, which allows the core body temperature to be considerably increased to stop the invasion of the offending agent and restrict the damage to the organism. There are different metabolic mechanisms of thermoregulation in the febrile response at the central and peripheral levels and cellular events. In response to cold or heat, the brain triggers thermoregulatory responses to coping with changes in body temperature, including autonomic effectors, such as thermogenesis, vasodilation, sweating, and behavioral mechanisms, that trigger flexible, goal-oriented actions, such as seeking heat or cold, nest building, and postural extension. Infrared thermography (IRT) has proven to be a reliable method for the early detection of pathologies affecting animal health and welfare that represent economic losses for farmers. However, the standardization of protocols for IRT use is still needed. Together with the complete understanding of the physiological and behavioral responses involved in the febrile process, it is possible to have timely solutions to serious problem situations. For this reason, the present review aims to analyze the new findings in pathophysiological mechanisms of the febrile process, the heat-loss mechanisms in an animal with fever, thermoregulation, the adverse effects of fever, and recent scientific findings related to different pathologies in farm animals through the use of IRT.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1931
Author(s):  
Marianna Soroka ◽  
Barbara Wasowicz ◽  
Anna Rymaszewska

In 1998, when the PCR technique was already popular, a Japanese company called Eiken Chemical Co., Ltd. designed a method known as the loop-mediated isothermal amplification of DNA (LAMP). The method can produce up to 109 copies of the amplified DNA within less than an hour. It is also highly specific due to the use of two to three pairs of primers (internal, external, and loop), which recognise up to eight specific locations on the DNA or RNA targets. Furthermore, the Bst DNA polymerase most used in LAMP shows a high strand displacement activity, which eliminates the DNA denaturation stage. One of the most significant advantages of LAMP is that it can be conducted at a stable temperature, for instance, in a dry block heater or an incubator. The products of LAMP can be detected much faster than in standard techniques, sometimes only requiring analysis with the naked eye. The following overview highlights the usefulness of LAMP and its effectiveness in various fields; it also considers the superiority of LAMP over PCR and presents RT-LAMP as a rapid diagnostic tool for SARS-CoV-2.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 6231-6243
Author(s):  
Klára Kobetičová ◽  
Martin Böhm ◽  
Jana Nábělková ◽  
Robert Černý

Methylxanthine’s fungicidal properties were investigated, with attention to the temperature of treatment. Caffeine and theophylline treatments of beech and spruce woods were applied for three months in the temperature range of -20 to 40 °C, simulating potential weather conditions in the European region and temperatures specific for various wood applications (cellars, wine cellars, room indoor temperatures, interior trusses). Effects of the selected temperatures were considered without the influence of the other possible factors, which have been considered in previous studies (e.g. effects of temperature in combination with other factors such as UV radiation, humidity, and chemical or biological degradation). Then, the specimens were exposed to a mix of molds and fungi for three months under controlled laboratory conditions in order to analyze a possible subsequent biological attack. The results did not show any effect of temperature of the methylxanthine treatment within the studied range on the organismal activity. Caffeine exhibited a better protective potential than theophylline and was more effective for spruce than for beech. The results indicated the suitability of caffeine for protection of spruce and spruce-based materials in interior applications at a stable temperature without significant effects of UV and humidity.


Sign in / Sign up

Export Citation Format

Share Document