Interannual variability of the wind field on the Black Sea north western shelf and its impact on river plume formation for decade 2011-2020

2021 ◽  
Author(s):  
Marina V. Tsyganova ◽  
Evgeny Lemeshko
2012 ◽  
Vol 9 (12) ◽  
pp. 18397-18445
Author(s):  
A. Capet ◽  
J.-M. Beckers ◽  
M. Grégoire

Abstract. The Black Sea north-western shelf (NWS) is a~shallow eutrophic area in which seasonal stratification of the water column isolates bottom waters from the atmosphere and prevents ventilation to compensate for the large consumption of oxygen, due to respiration in the bottom waters and in the sediments. A 3-D coupled physical biogeochemical model is used to investigate the dynamics of bottom hypoxia in the Black Sea NWS at different temporal scales from seasonal to interannual (1981–2009) and to differentiate the driving factors (climatic versus eutrophication) of hypoxic conditions in bottom waters. Model skills are evaluated by comparison with 14 500 in-situ oxygen measurements available in the NOAA World Ocean Database and the Black Sea Commission data. The choice of skill metrics and data subselections orientate the validation procedure towards specific aspects of the oxygen dynamics, and prove the model's ability to resolve the seasonal cycle and interannual variability of oxygen concentration as well as the spatial location of the oxygen depleted waters and the specific threshold of hypoxia. During the period 1981–2009, each year exhibits seasonal bottom hypoxia at the end of summer. This phenomenon essentially covers the northern part of the NWS, receiving large inputs of nutrients from the Danube, Dniestr and Dniepr rivers, and extends, during the years of severe hypoxia, towards the Romanian Bay of Constanta. In order to explain the interannual variability of bottom hypoxia and to disentangle its drivers, a statistical model (multiple linear regression) is proposed using the long time series of model results as input variables. This statistical model gives a general relationship that links the intensity of hypoxia to eutrophication and climate related variables. The use of four predictors allows to reproduce 78% of hypoxia interannual variability: the annual nitrate discharge (N), the sea surface temperature in the month preceding stratification (T), the amount of semi-labile organic matter in the sediments (C) and the duration of the stratification (D). Eutrophication (N, C) and climate (T, D) predictors explain a similar amount of variability (~35%) when considered separately. A typical timescale of 9.3 yr is found to describe the inertia of sediments in the recovering process after eutrophication. From this analysis, we find that under standard conditions (i.e. average atmospheric conditions, sediments in equilibrium with river discharges), the intensity of hypoxia can be linked to the level of nitrate discharge through a non-linear equation (power law). Bottom hypoxia does not affect the whole Black Sea NWS but rather exhibits an important spatial variability. This heterogeneous distribution, in addition to the seasonal fluctuations, complicates the monitoring of bottom hypoxia leading to contradictory conclusions when the interpretation is done from different sets of data. We find that it was the case after 1995 when the recovery process was overestimated due to the use of observations concentrated in areas and months not typically affected by hypoxia. This stresses the urging need of a dedicated monitoring effort in the NWS of the Black Sea focused on the areas and the period of the year concerned by recurrent hypoxic events.


2013 ◽  
Vol 10 (6) ◽  
pp. 3943-3962 ◽  
Author(s):  
A. Capet ◽  
J.-M. Beckers ◽  
M. Grégoire

Abstract. The Black Sea northwestern shelf (NWS) is a shallow eutrophic area in which the seasonal stratification of the water column isolates the bottom waters from the atmosphere. This prevents ventilation from counterbalancing the large consumption of oxygen due to respiration in the bottom waters and in the sediments, and sets the stage for the development of seasonal hypoxia. A three-dimensional (3-D) coupled physical–biogeochemical model is used to investigate the dynamics of bottom hypoxia in the Black Sea NWS, first at seasonal and then at interannual scales (1981–2009), and to differentiate its driving factors (climatic versus eutrophication). Model skills are evaluated by a quantitative comparison of the model results to 14 123 in situ oxygen measurements available in the NOAA World Ocean and the Black Sea Commission databases, using different error metrics. This validation exercise shows that the model is able to represent the seasonal and interannual variability of the oxygen concentration and of the occurrence of hypoxia, as well as the spatial distribution of oxygen-depleted waters. During the period 1981–2009, each year exhibits seasonal bottom hypoxia at the end of summer. This phenomenon essentially covers the northern part of the NWS – which receives large inputs of nutrients from the Danube, Dniester and Dnieper rivers – and extends, during the years of severe hypoxia, towards the Romanian bay of Constanta. An index H which merges the aspects of the spatial and temporal extension of the hypoxic event is proposed to quantify, for each year, the intensity of hypoxia as an environmental stressor. In order to explain the interannual variability of H and to disentangle its drivers, we analyze the long time series of model results by means of a stepwise multiple linear regression. This statistical model gives a general relationship that links the intensity of hypoxia to eutrophication and climate-related variables. A total of 82% of the interannual variability of H is explained by the combination of four predictors: the annual riverine nitrate load (N), the sea surface temperature in the month preceding stratification (Ts), the amount of semi-labile organic matter accumulated in the sediments (C) and the sea surface temperature during late summer (Tf). Partial regression indicates that the climatic impact on hypoxia is almost as important as that of eutrophication. Accumulation of organic matter in the sediments introduces an important inertia in the recovery process after eutrophication, with a typical timescale of 9.3 yr. Seasonal fluctuations and the heterogeneous spatial distribution complicate the monitoring of bottom hypoxia, leading to contradictory conclusions when the interpretation is done from different sets of data. In particular, it appears that the recovery reported in the literature after 1995 was overestimated due to the use of observations concentrated in areas and months not typically affected by hypoxia. This stresses the urgent need for a dedicated monitoring effort in the Black Sea NWS focused on the areas and months concerned by recurrent hypoxic events.


2016 ◽  
Vol 50 (5) ◽  
pp. 387-394
Author(s):  
S. A. Kudrenko

Abstract The data about the community composition, number and biomass of amphipods in three gulfs of the North-Western Black Sea are presented. The amphipod communities of the gulfs of Yahorlyk, Karkinit, and Tendra were studied and the species composition was compared with the previously published data. For each particular gulf, the list of amphipod species was composed. The quantitative parameters of the amphipod communities in the studied localities in different years were described.


2016 ◽  
Vol 1 (1) ◽  
pp. 24-35
Author(s):  
G. V. Zuyev ◽  
V. A. Bondarev ◽  
Yu. V. Samotoi

Investigations of the Black Sea sprat intraspecific differentiation are the basis for the scientific substantiation of rational exploitation of its resource potential. This work is devoted to the study of spatial variability of length and age structure of sprat as specific population parameter reflecting its intraspecific differentiation. Our own data and materials of Scientific, Technical and Economic Committee for Fisheries (STECF) of the European Commission have been used. The first time long-term dynamics (2007–2012) and interannual variability of length and age structure of sprat in different geographical regions of the Black Sea (coastal waters of Bulgaria – Romania, Turkey and the Crimea) have been investigated. Differences of the long-term dynamics and interannual variability of length and age structure in these regions have been found. Sprat population from Bulgaria – Romania region is in better conditions (mean length 8.59 ± 0.01 cm; mean age 1.79  year), sprat population from Crimea region is in worse conditions (mean length 7.64 ± 0.01 cm; mean age 1.38 year). It has been shown that the main factor determining the interregional biological heterogeneity of sprat is the different fishery regulations. This fact disagrees with concept of united commercial sprat stock in the Black Sea.


Sign in / Sign up

Export Citation Format

Share Document