Single joint module angle error analysis and modelling of self-driving articulated arm coordinate measuring machine

2021 ◽  
Author(s):  
Hong-tao Yang ◽  
Mei Shen ◽  
Jingjing Cheng ◽  
Mengyao Zhang ◽  
Tingting Hu ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1715
Author(s):  
Yi Hu ◽  
Yuyi Zhan ◽  
Liang Han ◽  
Penghao Hu ◽  
Bing Ye ◽  
...  

Nowadays, integrated joint modules are increasingly adopted in manipulators for their advantages of high integration, miniaturization and high repeatability positioning accuracy. The problem of generally low absolute positioning accuracy (namely angle measurement accuracy) must be solved before they can be introduced into the self-driven articulated arm coordinate measuring machine which is under study in our laboratory. In this study, the sources of joint module’s angle error were analyzed and the error model based on harmonic analysis was established. Two integrated joint modules were calibrated on the self-designed calibration platform and the model parameters were deduced, respectively. The angle error was then compensated in the experiments and the results demonstrated that the angle error of the joint modules was reduced by 82.03% on average. The established angle error model can be effectively applied into the self-driven articulated arm coordinated measuring machine.


2018 ◽  
Vol 12 (4) ◽  
pp. 264-271 ◽  
Author(s):  
Alireza Izadi ◽  
Fariborz Vafaee ◽  
Arash Shishehian ◽  
Ghodratollah Roshanaei ◽  
Behzad Fathi Afkari

Background. Recently, non-presintered chromium-cobalt (Cr-Co) blocks with the commercial name of Ceramill Sintron were introduced to the market. However, comprehensive studies on the dimensional accuracy and fit of multi-unit frameworks made of these blocks using the coordinate measuring machine (CMM) are lacking. This study aimed to assess and compare the dimensional changes and fit of conventional casting and milled frameworks using Ceramill Sintron. Methods. A metal model was designed and scanned and 5-unit frameworks were fabricated using two techniques: (I) the conventional casting method (n=20): the wax model was designed, milled in the CAD/CAM machine, flasked and invested; (II) the milling method using Ceramill Sintron blocks (n=20): the wax patterns of group 1 were used; Ceramill Sintron blocks were milled and sintered. Measurements were made on the original reference model and the fabricated frameworks using the CMM in all the three spatial dimensions, and dimensional changes were recorded in a checklist. Data were analyzed with descriptive statistics, and the two groups were compared using one-way ANOVA and Tukey test (α=0.05). Results. The fabricated frameworks in both groups showed significant dimensional changes in all the three dimensions. Comparison of dimensional changes between the two groups revealed no significant differences (P>0.05) except for transverse changes (arch) that were significantly greater in Ceramill Sintron frameworks (P<0.05). Conclusion. The two manufacturing processes were the same regarding dimensional changes and the magnitude of marginal gaps and both processes resulted in significant dimensional changes in frameworks. Ceramill Sintron frameworks showed significantly greater transverse changes than the conventional frameworks.


Sign in / Sign up

Export Citation Format

Share Document