Internal force calculation of long span suspension bridge under vertical load based on elastic foundation beam algorithm Ⅱ

2021 ◽  
Author(s):  
Yurong Ma ◽  
Yuyi Zhang ◽  
Qianwen Han ◽  
Feng Wang ◽  
Yaqiong Jiang ◽  
...  
2021 ◽  
Vol 283 ◽  
pp. 01031
Author(s):  
Ma Yurong ◽  
Han Qianwen ◽  
Wang Feng ◽  
Li Haixia

The calculation of suspension bridge under vertical load is the most important content of suspension bridge design calculation and the most important basis of main component design. Combined with the knowledge of structural mechanics, this paper puts forward the elastic foundation beam algorithm, and deduces the important formulas for the cross-section design and strength comparison of sling, cable and stiffening beam. In use, as long as the parameters are brought into the formula, it is more convenient and fast compared with the complex software modeling. The method proposed in this paper is used to check the strength of the completed Japanese Guanmen bridge, and the results are accurate enough. It is fast and reliable to use this method in the preliminary design and rapid safety assessment of suspension bridge.


2021 ◽  
Author(s):  
Yurong Ma ◽  
Yuyi Zhang ◽  
Qianwen Han ◽  
Feng Wang ◽  
Yaqiong Jiang ◽  
...  

2011 ◽  
Vol 94-96 ◽  
pp. 1875-1878
Author(s):  
Chun Quan Dai ◽  
Lei Wang ◽  
Yong Ji Wang

Tunnels of new across the old one with short distance is the emphasis and difficulty in metro engineering development, which has great research values. According to the characteristic of deformation on overlap tunnels with short distance, we put forward the calculating model of lining deformation and internal force analysis. And deduced the formula of calculation on the new tunnel's construction to adjacent ones, then discussed and analyzed the settlement of the point of inflection on soffit lining and the greatest subsidence angle. We verify the theoretical formula about the reliability of the computation and rationality through a series of numerical simulation test against the background of Qingdao overlap tunnels.


2014 ◽  
Vol 501-504 ◽  
pp. 1270-1273
Author(s):  
Wen Yuan Chen

Using the viscouselastic artificial boundary, three conditions of long-span cable-stayed bridge are analyzed,such as pile cap consolidation, pile - structure and pile soil structure interaction. Natural frequency of bridge of pile - soil - structure coupling becomes small and cycle becomes long. The pile bottom reaction force decreased obviously, at the same time, the axial force , bending moment, axial force of cable, tower of axial force and bending moment is also reduced significantly. Cable-stayed bridge is a special flexible structure, so, static internal force calculation in the tower bottom consolidation pattern is safe, but the value is too large.


2011 ◽  
Vol 368-373 ◽  
pp. 2760-2763
Author(s):  
Qiang Wang ◽  
Li Yuan Tong

The elastic foundation beam method is the main method of stress analysis of the supporting structure of the foundation pit, it can easily calculate the internal forces and displacement of the structure, however, the computing method of elastic foundation beam deflection equation is more complicated. So according to the computation principle and method of elastic foundation beam, a computing program has been programmed by MATLAB mathematical software. The program has been applied to compute the internal force and deformation of deep foundation pit of Suzhou subway station. The variation law of displacement and bending moment of supporting structure during excavation has been obtained. The results of the measured and calculated agree well, and the computing results have efficiently guided and optimized supporting design.


2006 ◽  
Vol 11 (3) ◽  
pp. 293-318 ◽  
Author(s):  
M. Zribi ◽  
N. B. Almutairi ◽  
M. Abdel-Rohman

The flexibility and low damping of the long span suspended cables in suspension bridges makes them prone to vibrations due to wind and moving loads which affect the dynamic responses of the suspended cables and the bridge deck. This paper investigates the control of vibrations of a suspension bridge due to a vertical load moving on the bridge deck with a constant speed. A vertical cable between the bridge deck and the suspended cables is used to install a hydraulic actuator able to generate an active control force on the bridge deck. Two control schemes are proposed to generate the control force needed to reduce the vertical vibrations in the suspended cables and in the bridge deck. The proposed controllers, whose design is based on Lyapunov theory, guarantee the asymptotic stability of the system. The MATLAB software is used to simulate the performance of the controlled system. The simulation results indicate that the proposed controllers work well. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a velocity feedback controller.


2021 ◽  
Vol 25 (3) ◽  
pp. 854-865
Author(s):  
Hao Wang ◽  
Zidong Xu ◽  
Min Yang ◽  
Tianyou Tao ◽  
Jianxiao Mao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document