Design of reduced thrust for civil aircraft takeoff based on performance simulation

2021 ◽  
Author(s):  
Yang Zhao ◽  
Mingqian Chen ◽  
Dongcheng Li
Author(s):  
Zhang Xiao-bo ◽  
Wang Zhan-xue

In this paper, a double bypass variable cycle engine with FLADE (Fan on Blade) is considered. The FLADE VCE is one of the research hotspots for future military and civil aircraft power device, which shows outstanding performance advantages. Compared to the mixed-flow turbofan, FLADE VCE is more complex than conventional aero-engine for its multi-components and multi-variable parts, which make it difficult to modeling and optimization. For getting the performance of FLADE VCE, the model for engine performance simulation is researched. The method for FLADE performance simulation and the steady-state performance simulation model for FLADE VCE are developed. And a component-based engine performance simulation system is established based on object-oriented modeling method. For obtaining the optimal integrated performance of FLADE VCE, suitable optimization method is required. Unfortunately, the optimization of FLADE VCE is a non-linear non-differentiable problem, which makes it difficult to solve by conventional deterministic optimization method. In order to solve this problem, the differential evolution (DE) algorithm is considered. To overcome the limitations of original DE algorithm, an improved DE algorithm with modifying mutation operator is proposed by this paper. The FLADE VCE optimization problem is solved by employing the improved DE algorithm.


Author(s):  
M. A. Danilov ◽  
◽  
M. V. Drobysh ◽  
A. N. Dubovitsky ◽  
F. G. Markov ◽  
...  

Restrictions of emissions for civil aircraft engines, on the one hand, and the need in increasing the engine efficiency, on the other hand, cause difficulties during development of low-emission combustors for such engines.


2019 ◽  
pp. 22-26
Author(s):  
А. Богоявленский ◽  
A. Bogoyavlenskiy

Snow-ice deposits formed on the outer surfaces of aircrafts on the ground during parking can have a negative impact during take-off due to the deterioration of aerodynamic and flight performance, a significant and even critical decrease in lift, increased drag, blocking controls, difficulty or blocking of landing gear retraction, damage to the blades of inlet guide vanes and/or the blades of an engine compressor. To exclude the influence of snow and ice deposits, anti-icing treatment is performed, including their removal and/or protection from subsequent formation. For this purpose, special anti-icing machines (deicers), equipped with such means of instrumental control as counters of anti-icing fluid pumps, measuring scales of anti-icing fluid tanks, thermometers and pressure gauges for temperature and pressure measuring at the outlet of a spray nozzle, are used. The article deals with the metrological aspects of civil aircrafts anti-icing prior to flight.


Sign in / Sign up

Export Citation Format

Share Document