Investigating the internal structure of holocene coastal sand dunes using ground-penetrating radar: example from the north coast of Northern Ireland

Author(s):  
John McGourty ◽  
Peter Wilson
Author(s):  
Peter M. Fischer ◽  
Patrik Klingborg ◽  
Fanny Kärfve ◽  
Fredrika Kärfve ◽  
C. Hagberg ◽  
...  

Determination of the complete occupational sequence of the site, including investigation of pre-12th century levels which were thoroughly studied by P. Åström since the 1970s, is the main task of the planned project. During the course of the expedition (NSCE11) in spring 2010 a ground-penetrating radar survey (GPR) was carried out at Dromolaxia Vizatzia/Hala Sultan Tekke in Area 6, leading to the discovery of a large Late Cypriote complex. The compound is bordered to the north by a substantial wall, against which nine rooms (so far) could be exposed. Two occupational phases have been verified but there are indications of a third. The suggested functions of the various structures of the most recent phase are: living, working, storage and administration spaces. The rich find contexts point to the production of textiles and metal objects, and the locally produced pottery is generally of a high quality. There are also many imports, mainly from the Mycenaean sphere of culture. The locally produced vessels from Phase 2 include the “Creature krater” which is a masterpiece of a high artistic standard. Another piece of elevated artistry is the piece of a “Warrior vase”.


2021 ◽  
pp. 1-53
Author(s):  
Lei Fu ◽  
Lanbo Liu

Ground-penetrating radar (GPR) is a geophysical technique widely used in near-surface non-invasive detecting. It has the ability to obtaining a high-resolution internal structure of living trunks. Full wave inversion (FWI) has been widely used to reconstruct the dielectric constant and conductivity distribution for cross-well application. However, in some cases, the amplitude information is not reliable due to the antenna coupling, radiation pattern and other effects. We present a multiscale phase inversion (MPI) method, which largely matches the phase information by normalizing the magnitude spectrum; in addition, a natural multiscale approach by integrating the input data with different times is implemented to partly mitigate the local minimal problem. Two synthetic GPR datasets generated from a healthy oak tree trunk and from a decayed trunk are tested by MPI and FWI. Field GPR dataset consisting of 30 common shot GPR data are acquired on a standing white oak tree (Quercus alba); the MPI and FWI methods are used to reconstruct the dielectric constant distribution of the tree cross-section. Results indicate that MPI has more tolerance to the starting model, noise level and source wavelet. It can provide a more accurate image of the dielectric constant distribution compared to the conventional FWI.


2021 ◽  
Author(s):  
Julissa Rojas-Sandoval ◽  
Nick Pasiecznik

Abstract E. umbellata is an important deciduous shrub which reaches up to 5 m high and 10 cm in d.b.h. It is found in thickets and sparse woods of Japan, Korea and China. E. umbellata is a shade intolerant pioneer tree and is also commonly found along riversides and seashores in Japan. This species is growing in humid areas with 1000-4000 mm of annual rainfall in Japan. In China it is reported to grow even in semi-arid areas of Nei Menggu, Gansu and Shaanxi province, where annual rainfall is around 400 mm (Niu, 1990). E. umbellata can fix nitrogen and it is tolerant to salt winds, this species is therefore used for fixation of coastal sand dunes in Japan, and is frequently planted mixed with Pinus thunbergii as a soil improving tree. E. umbellata is also planted in eroded areas of mountainous zones to re-establish and develop vegetation. In China, E. umbellata is occasionally cultivated in gardens (Zhang, 1997).


The Holocene ◽  
2004 ◽  
Vol 14 (3) ◽  
pp. 406-416 ◽  
Author(s):  
Peter Wilson ◽  
John McGourty ◽  
Mark D. Bateman

Soil Research ◽  
1996 ◽  
Vol 34 (1) ◽  
pp. 161 ◽  
Author(s):  
CH Thompson ◽  
EM Bridges ◽  
DA Jenkins

An exploratory examination has been made of three different kinds of hardpans found in humus podzols (Humods and Aquods) of the coastal lowlands of southern Queensland, by means of slaking tests, a reactive aluminium test, acid oxalate and pyrophosphate extractions and electron microscopy. Samples from three indurated layers exposed by erosion or sand-mining in large coastal dunes were included for comparison. The investigation confirmed that, a pan in a bleached A2 (albic E) horizon is most likely caused by particle packing and that a pan in a black B2h (spodic) horizon is cemented by an aluminium-organic complex. Yellow-brown pans underlying black organic pans (spodic horizons) were found to be cemented by both a proto-imogolite/allophane complex and an organic substance. An inorganic reactive Al complex differing from the proto-imogolite allophane recorded in the overlying giant podzols appeared to be main cement of three indurated layers in the nearby coastal sand dunes. Mechanical disturbance of the pans, e.g. ripping, is unlikely to improve drainage and effective soil depth in the long term, because the disturbed zones are expected to be re-sealed by packed particles or by the aluminium-organic complex cement.


Sign in / Sign up

Export Citation Format

Share Document