New liquid shock sensor and measurement of shock Hugoniot compression curve for several biorelated materials

2001 ◽  
Author(s):  
Kunihito Nagayama ◽  
Yasuhito Mori ◽  
Yasuhiro Motegi ◽  
Motonao Nakahara



2002 ◽  
Vol 91 (1) ◽  
pp. 476 ◽  
Author(s):  
K. Nagayama ◽  
Y. Mori ◽  
K. Shimada ◽  
M. Nakahara


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Lütgert ◽  
J. Vorberger ◽  
N. J. Hartley ◽  
K. Voigt ◽  
M. Rödel ◽  
...  

AbstractWe present structure and equation of state (EOS) measurements of biaxially orientated polyethylene terephthalate (PET, $$({\hbox {C}}_{10} {\hbox {H}}_8 {\hbox {O}}_4)_n$$ ( C 10 H 8 O 4 ) n , also called mylar) shock-compressed to ($$155 \pm 20$$ 155 ± 20 ) GPa and ($$6000 \pm 1000$$ 6000 ± 1000 ) K using in situ X-ray diffraction, Doppler velocimetry, and optical pyrometry. Comparing to density functional theory molecular dynamics (DFT-MD) simulations, we find a highly correlated liquid at conditions differing from predictions by some equations of state tables, which underlines the influence of complex chemical interactions in this regime. EOS calculations from ab initio DFT-MD simulations and shock Hugoniot measurements of density, pressure and temperature confirm the discrepancy to these tables and present an experimentally benchmarked correction to the description of PET as an exemplary material to represent the mixture of light elements at planetary interior conditions.



2016 ◽  
Vol 93 (9) ◽  
Author(s):  
Oliver Strickson ◽  
Emilio Artacho
Keyword(s):  


2020 ◽  
Vol 128 (22) ◽  
pp. 225901
Author(s):  
M. Sabeeh Akram ◽  
Zhuo-Ning Fan ◽  
Ming-Jian Zhang ◽  
Qi-Jun Liu ◽  
Fu-Sheng Liu


2010 ◽  
Vol 638-642 ◽  
pp. 1059-1064
Author(s):  
Kunihito Nagayama ◽  
Yasuhito Mori

Polymer materials have widespread applications in various situations for structural materials by themselves as well as by combining with other materials such as carbon fiber. Some of them are also candidates for energetic materials in space applications.[1] Due to their general use, shock response of them has attracted attention for many researchers.[2-4] One of the striking characteristics of the dynamic response of them is that stress and/or particle velocity profile has a relaxation structure of s range.[5, 6]





1991 ◽  
Vol 01 (C3) ◽  
pp. C3-533-C3-538
Author(s):  
E. WLODARCZYK ◽  
R. TREBINSKI
Keyword(s):  


1999 ◽  
Vol 5 (2) ◽  
pp. 108-115
Author(s):  
Antanas Alikonis

Disturbance of soil structure influences its density, strength and deformation properties. Among other cases soil structure could be disturbed by compacting it. It is possible to increase deformation properties of sand or gravel by compacting them. However, for clay soils deformation properties may increase if they are compacted. Differences of settlements of a building depends on the different deformation properties of the artificially placed and compacted soils beneath the foundations. Different values of stiffness modulus are used for the structural design of the buildings which are constructed on the soils with different compressibility. Coefficient of changeability of soil compression (1) was used. It may be calculated as a ratio of maximum and minimum values of deformation modulus, or according to the maximum and minimum values of coefficient of relative compressibility (3). Coefficient of the relative compressibility of soil can be calculated depending on the maximum and minimum values of tip resistence from CPT test (5). According to the coefficient of the relative compressibility we could estimate whether the soil is uniform, nonuniform or extremely non-uniform. It is important for the design of civil engineering structures. Mechanical properties of soils may be back-calculated using theoretical values of settlements and loads. Most frequently within the building layout area soils are natural and artificially compacted. For a compacted soil it is possible to draw compression curve in semi-logarithmic scale using compression curve of the same natural soil and the void ratio of the artificially placed and compacted soil. Thus we can determine compressibility of the soil with disturbed or undisturbed structure. Using parameters of soil compressibility, we can determine the coefficient of the relative compressibility, maximum and minimum values of settlement and modulus of stiffness.



Sign in / Sign up

Export Citation Format

Share Document