scholarly journals Wireless subsurface microsensors for health monitoring of thermal protection systems on hypersonic vehicles

Author(s):  
Frank S. Milos ◽  
David G. Watters ◽  
Joan B. Pallix ◽  
Alfred J. Bahr ◽  
David L. Huestis
2016 ◽  
Vol 697 ◽  
pp. 449-452 ◽  
Author(s):  
Guang Hai Wang ◽  
Feng Zhang ◽  
Xian Kai Sun ◽  
Hao Ran Sun ◽  
Yan Li Huo ◽  
...  

In this paper, high temperature multilayer thermal insulations were to investigate in thermal protection systems for hypersonic vehicles. The thermal response and thermal property of the multilayer insulations were simulated and analyzed by using Ansys software. The calculation results were analyzed and the effects of parameters such as layer thermal conductivity, layer thickness, layer density, and numbers of layer are clarified. Thermal property of multilayer insulations was optimized. The results are helpful to the optimum design of the multilayer insulation system.


2020 ◽  
Vol 11 (4) ◽  
pp. 929-935
Author(s):  
Tina Staebler ◽  
Hannah Boehrk ◽  
Heinz Voggenreiter

Abstract Carbon-based composites such as C/C-SiC are used in thermal protection systems for atmospheric re-entry. The electrical properties of this semiconductor material can be used for health monitoring, as electrical resistivity changes with damage, strain, and temperature. In this work, electrical resistance measurements are used to detect damage in a thermal protection system made of C/C-SiC. This can be done in-situ. Damage experiments with $$320\,\hbox {mm}\,\times \,120\,\hbox {mm}\,\times \,3\hbox { mm}$$ 320 mm × 120 mm × 3 mm panel shaped samples were conducted with a multiplexer switching unit to determine up to 288 electrical resistance and voltage measurements per cycle time and spatially resolved. The change in resistance is an indicator for damage, and with the use of post-processing algorithms, the location of the damage can be determined. With these data, inhomogeneous temperatures can be accorded for and damage can be detected. This method reacts even to small damages where less than 0.02% of the monitored surface is damaged. A localisation with a deviation from the real defect of less than 8% in sample width and 17% in sample length is presented.


2013 ◽  
Vol 558 ◽  
pp. 268-280 ◽  
Author(s):  
Nigel Hoschke ◽  
Don C. Price ◽  
D. Andrew Scott ◽  
W. Lance Richards

The thermal protection systems of spacecraft are vulnerable to damage from impacts by foreign objects moving at high velocities. This paper describes a proposed novel structural health monitoring system that will detect, locate and evaluate the damage resulting from such impacts. This system consists of a network of intelligent local agents, each of which controls a network of piezoelectric acoustic emission sensors to detect and locate an impact, and a network of optical fibre Bragg grating sensors to evaluate the effect of the impact damage by means of a thermographic technique. The paper concentrates on two issues that are critical to the successful implementation of the proposed SHM system: measurement of the elastic properties of the thermal protection material, knowledge of which is essential to the design and operation of the acoustic emission sensor network; and investigation of the practical feasibility of a switched network of optical fibre sensors.


2020 ◽  
pp. 10-21
Author(s):  
V. G. Babashov ◽  
◽  
N. M. Varrik ◽  

The emergence of new types of space and aviation technology necessitates the development of new types of thermal protection systems capable of operating at high temperature and long operating times. There are several types of thermal protection systems for different operating conditions: active thermal protection systems using forced supply of coolant to the protected surface, passive thermal protection systems using materials with low thermal conductivity without additional heat removal, high-temperature systems, which are simultaneously elements of the bearing structure and provide thermal protection, ablation materials. Heat protection systems in the form of rigid tiles and flexible panels, felt and mats are most common kind of heat protecting systems. This article examines the trends of development of flexible reusable heat protection systems intended for passive protection of aircraft structural structures from overheating.


Sign in / Sign up

Export Citation Format

Share Document