Evaluation of variations of biomolecular constituents in human skin in vivo by near-infrared Raman spectroscopy

Author(s):  
Zhiwei Huang ◽  
Haishan Zeng ◽  
Calum E. MacAulay ◽  
Iltefat Hamzavi ◽  
David I. McLean ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 922
Author(s):  
William Querido ◽  
Shital Kandel ◽  
Nancy Pleshko

Advances in vibrational spectroscopy have propelled new insights into the molecular composition and structure of biological tissues. In this review, we discuss common modalities and techniques of vibrational spectroscopy, and present key examples to illustrate how they have been applied to enrich the assessment of connective tissues. In particular, we focus on applications of Fourier transform infrared (FTIR), near infrared (NIR) and Raman spectroscopy to assess cartilage and bone properties. We present strengths and limitations of each approach and discuss how the combination of spectrometers with microscopes (hyperspectral imaging) and fiber optic probes have greatly advanced their biomedical applications. We show how these modalities may be used to evaluate virtually any type of sample (ex vivo, in situ or in vivo) and how “spectral fingerprints” can be interpreted to quantify outcomes related to tissue composition and quality. We highlight the unparalleled advantage of vibrational spectroscopy as a label-free and often nondestructive approach to assess properties of the extracellular matrix (ECM) associated with normal, developing, aging, pathological and treated tissues. We believe this review will assist readers not only in better understanding applications of FTIR, NIR and Raman spectroscopy, but also in implementing these approaches for their own research projects.


2002 ◽  
Author(s):  
Amy Robichaux ◽  
Chad A. Lieber ◽  
Heidi Shappell ◽  
Beth Huff ◽  
Howard Jones III ◽  
...  

2018 ◽  
Vol 19 (7) ◽  
pp. 3177-3186 ◽  
Author(s):  
Vamshi Krishna Tippavajhala ◽  
Taciana D. Magrini ◽  
Daniele C. Matsuo ◽  
Michely G. P. Silva ◽  
Priscila P. Favero ◽  
...  

Author(s):  
Gerald W. Lucassen ◽  
Peter J. Caspers ◽  
Gerwin J. Puppels ◽  
Maxim E. Darvin ◽  
Juergen Lademann

2011 ◽  
Vol 26 (10) ◽  
pp. 4104-4110 ◽  
Author(s):  
Mads Sylvest Bergholt ◽  
Wei Zheng ◽  
Kan Lin ◽  
Khek Yu Ho ◽  
Ming Teh ◽  
...  

2020 ◽  
Vol 17 (10) ◽  
pp. 105601
Author(s):  
Qingyu Lin ◽  
Ekaterina N Lazareva ◽  
Vyacheslav I Kochubey ◽  
Yixiang Duan ◽  
Valery V Tuchin

Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 887
Author(s):  
Fotis Iliopoulos ◽  
Peter J. Caspers ◽  
Gerwin J. Puppels ◽  
Majella E. Lane

Previously, we reported the use of Confocal Raman Spectroscopy (CRS) to investigate the topical delivery of actives and excipients. We have also correlated the results from CRS with findings from in vitro diffusion studies in human skin. However, until now CRS has only been used as a semi-quantitative method of determining the skin uptake of molecules, with results expressed as arbitrary units of signal intensity. Clearly, this posed challenges for using CRS to determine skin delivery and to assess the drug bioavailability and bioequivalence of topical formulations. In the present work, the permeation of niacinamide (NIA) from various formulations in human skin was studied in vitro using conventional Franz cells and in vivo using a quantitative CRS method under finite dose conditions. The selection of NIA was based on its wide use in pharmaceutical and personal care formulations for many years. This is the first fully quantitative study to compare these methods. The vehicles investigated were neat Transcutol® P (TC); binary combinations of propylene glycol (PG) with propylene glycol monolaurate (PGML); and ternary mixtures of PG, PGML, and isopropyl myristate (IPM). These solvents were selected to encompass a range of physicochemical properties. NIA permeation was evident from all formulations in vitro and in vivo. The vehicles PG:PGML and PG:PGML:IPM delivered comparable amounts across the skin in vitro at 24 h (100.3–106.7 µg/cm2, p > 0.05) that were significantly higher compared with those of TC (1.3 µg/cm2, p < 0.05). An excellent in vitro in vivo correlation (R2 = 0.98) was found following the linear regression of the cumulative amounts of NIA permeated in vitro and the amounts of NIA at 2 μm in the skin measured with CRS. A very good correlation between the cumulative permeation of NIA in vitro and the total amount of NIA that penetrated the stratum corneum (SC) per unit of surface area (μg/cm2) in vivo was also observed, with a Pearson correlation coefficient (R2) of 0.94. The findings support the use of CRS for the quantitative measurement of actives delivered to the skin in vivo. Future studies will focus on exploring the reproducibility and reliability of the method by investigating the delivery of different actives from a wider range of vehicles. Additionally, quantitative CRS will be evaluated further as a method for assessing the bioequivalence of topical formulations.


2009 ◽  
Vol 14 (2) ◽  
pp. 024017 ◽  
Author(s):  
Xiao Han ◽  
Harvey Lui ◽  
David I. McLean ◽  
Haishan Zeng

Author(s):  
Anita Mahadevan-Jansen ◽  
Amy Robichaux ◽  
Chad Lieber ◽  
Heidi Shappell ◽  
Darryl Ellis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document