scholarly journals Loop closure theory in deriving linear and simple kinematic model for a 3-DOF parallel micromanipulator

Author(s):  
Yuen Kuan Yong ◽  
Tien-Fu Lu ◽  
Daniel C. Handley
Robotica ◽  
2018 ◽  
Vol 36 (11) ◽  
pp. 1641-1663 ◽  
Author(s):  
Andreas Müller

SUMMARYModeling the instantaneous kinematics of lower pair linkages using joint screws and the finite kinematics with Lie group concepts is well established on a solid theoretical foundation. This allows for modeling the forward kinematics of mechanisms as well the loop closure constraints of kinematic loops. Yet there is no established approach to the modeling of complex mechanisms possessing multiple kinematic loops. For such mechanisms, it is crucial to incorporate the kinematic topology within the modeling in a consistent and systematic way. To this end, in this paper a kinematic model graph is introduced that gives rise to an ordering of the joints within a mechanism and thus allows to systematically apply established kinematics formulations. It naturally gives rise to topologically independent loops and thus to loop closure constraints. Geometric constraints as well as velocity and acceleration constraints are formulated in terms of joint screws. An extension to higher order loop constraints is presented. It is briefly discussed how the topology representation can be used to amend structural mobility criteria.


2006 ◽  
Vol 129 (8) ◽  
pp. 831-843 ◽  
Author(s):  
Ümit Sönmez

New classes of compliant long dwell mechanism designs are introduced, formulated, and simulated. These classes of compliant dwell mechanisms incorporate the buckling motion of flexible members. Long dwell motion is obtained throughout the buckling motion of a flexible follower. Flexible buckling members are modeled using polynomial functions fitted to nonlinear inextensible exact elastica theory. The displacement analysis of the mechanisms is done quasi-statically using loop closure theory, static equilibrium of flexible parts represented by polynomial load deflections. One example of each new mechanism and its simulation results are presented.


Author(s):  
Lucas Kato ◽  
Tiago Pinto ◽  
Henrique Simas ◽  
Daniel Martins

2020 ◽  
Vol 8 (4) ◽  
pp. 276-286
Author(s):  
Vu Duc Quyen ◽  
Andrey Ronzhin

Three posterior algorithms NSGA-II, MOGWO and MOPSO to solve the problem of multicriteria optimization of the robotic gripper design are considered. The description of the kinematic model of the developed prototype of the four-fingered gripper for picking tomatoes, its limitations and objective functions used in the optimization of the design are given. The main advantage of the developed prototype is the use of one actuator for the control of the fingers and the suction nozzle. The results of optimization of the kinematic model and the dimensions of the elements of robotic gripper using the considered posterior algorithms are presented.


Author(s):  
Aaron T. O’Toole ◽  
Stephen L. Canfield

Skid steer tracked-based robots are popular due to their mechanical simplicity, zero-turning radius and greater traction. This architecture also has several advantages when employed by mobile platforms designed to climb and navigate ferrous surfaces, such as increased magnet density and low profile (center of gravity). However, creating a kinematic model for localization and motion control of this architecture is complicated due to the fact that tracks necessarily slip and do not roll. Such a model could be based on a heuristic representation, an experimentally-based characterization or a probabilistic form. This paper will extend an experimentally-based kinematic equivalence model to a climbing, track-based robot platform. The model will be adapted to account for the unique mobility characteristics associated with climbing. The accuracy of the model will be evaluated in several representative tasks. Application of this model to a climbing mobile robotic welding system (MRWS) is presented.


Sign in / Sign up

Export Citation Format

Share Document