Study of the optical properties of a molecular system interacting with a high-intensity electromagnetic field

2004 ◽  
Author(s):  
M. Gorayeb ◽  
J. L. Paz ◽  
A. J. Hernandez
2008 ◽  
Vol 17 (02) ◽  
pp. 213-224 ◽  
Author(s):  
A. MASTRODOMENICO ◽  
M. GORAYEB ◽  
J. L. PAZ

The optical properties of a two-level molecular system immersed in a thermal reservoir and irradiated by an electromagnetic field were studied using the optical stochastic Bloch equations. The effect of the solvent is modeled as a stochastical shift of the system's Bohr frequency and the electromagnetic field includes both pump and probe fields. The resulting analytical expressions were studied by means of two and three dimensional graphics of the optical properties as a function of the pump-frequency detuning factor and the strength of the noise source.


2008 ◽  
Vol 17 (04) ◽  
pp. 511-520 ◽  
Author(s):  
A. MENDOZA-GARCÍA ◽  
J. L. PAZ ◽  
M. GORAYEB ◽  
A. J. HERNÁNDEZ ◽  
E. CASTRO ◽  
...  

The interaction between a two-level molecular system and a high intensity electric field under the influence of a solvent was analyzed through the OSBE. To solve these equations, the average of the coherence was performed, using a generalized Lorentzian approximation for the Voigt's function as a probability distribution. Applying the convolution theorem, we were able to find an analytical expression for the coherence, from which we calculate optical properties, such as the absorption coefficient, refractive index and emitted signal intensity. In this contribution, we show numerical results for these properties, calculated for a standard model of organic colorants, Green Malaquite.


2013 ◽  
Vol 22 (01) ◽  
pp. 1350007
Author(s):  
J. L. PAZ ◽  
A. MASTRODOMENICO ◽  
M. A. IZQUIERDO

In this work are studied the symmetry properties of the Rayleigh-type optical mixing signal of a two-level molecular system immersed in a thermal bath and irradiated by a classical electromagnetic field. The solvent induces a random shift of the Bohr frequency in the molecular system. A methodology based in cumulant expansions is employed to obtain the average of the coherences, populations, and susceptibilities of Fourier components associated, calculated by the optical stochastic Bloch equations. These symmetry properties show the dependence of the measured spectra with the variations in the frequencies of the incident fields. Our results show that the inclusion of the thermal bath diminishes the intensity response as well it promotes the loss of the symmetry properties, compared with the same results in the absence of the bath.


2010 ◽  
Vol 19 (03) ◽  
pp. 427-436
Author(s):  
A. MENDOZA-GARCÍA ◽  
A. ROMERO-DEPABLOS ◽  
M. A. ORTEGA ◽  
J. L. PAZ ◽  
L. ECHEVARRÍA

We have developed an analytical method to describe the optical properties of nanoparticles, whose results are in agreement with the observed experimental behavior according to the size of the nanoparticle under analysis. Our considerations to describe plasmonic absorption and dispersion are based on the combination of the two-level molecular system and the two-dimensional quantum box models. Employing the optical stochastic Bloch equations, we have determined the system's coherence, from which we have calculated expressions for the absorption coefficient and refractive index. The innovation of this methodology is that it allows us to take into account the solvent environment, which induce quantum effects not considered by classical treatments.


2020 ◽  
Vol 30 ◽  
pp. 1046-1051
Author(s):  
R. Mghaiouini ◽  
N. Benzbiria ◽  
M.E. Belghiti ◽  
H.E. Belghiti ◽  
M. Monkade ◽  
...  

Plasmonics ◽  
2016 ◽  
Vol 12 (6) ◽  
pp. 1929-1937 ◽  
Author(s):  
Zao Yi ◽  
Miao Liu ◽  
Jiangshan Luo ◽  
Xibin Xu ◽  
Weibin Zhang ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Bernard de Dormale ◽  
Vo-Van Truong

Two-dimensional arrays of particles are of great interest because of their very characteristic optical properties and numerous potential applications. Although a variety of theoretical approaches are available for the description of their properties, methods that are accurate and convenient for computational procedures are always sought. In this work, a new technique to study the diffraction of a monochromatic electromagnetic field by a two-dimensional lattice of spheres is presented. The method, based on Fourier series, can take into account an arbitrary number of terms in the multipole expansion of the field scattered by each sphere. This method has the advantage of leading to simple formulas that can be readily programmed and used as a powerful tool for nanostructure characterization.


2021 ◽  
Author(s):  
Xiaolong Zheng ◽  
Shuangyong Zhu ◽  
Xiaomei Zhang ◽  
Baifei Shen

Sign in / Sign up

Export Citation Format

Share Document