An infrared integral field spectrograph specialized for speckle suppression and the direct detection of extrasolar planets

Author(s):  
Jean-François Lavigne ◽  
René Doyon ◽  
Simon Thibault ◽  
David Lafrenière
2011 ◽  
Vol 729 (2) ◽  
pp. 132 ◽  
Author(s):  
Justin R. Crepp ◽  
Laurent Pueyo ◽  
Douglas Brenner ◽  
Ben R. Oppenheimer ◽  
Neil Zimmerman ◽  
...  

2013 ◽  
Vol 8 (S299) ◽  
pp. 54-55
Author(s):  
Dino Mesa ◽  
Raffaele Gratton ◽  
Riccardo U. Claudi ◽  
Silvano Desidera ◽  
Enrico Giro ◽  
...  

AbstractUntil now, just a few extrasolar planets (30 out of 860) have been found through the direct imaging method. This number should greatly improve when the next generation of High Contrast Instruments like Gemini Planet Imager (GPI) at Gemini South Telescope or SPHERE at VLT will became operative at the end of this year. In particular, the Integral Field Spectrograph (IFS), one of the SPHERE subsystems, should allow a first characterization of the spectral type of the found extrasolar planets. Here we present the results of the last performance tests that we have done on the IFS instrument at the Institut de Planetologie et d'Astrophysique de Grenoble (IPAG) in condition as similar as possible to the ones that we will find at the telescope. We have found that we should be able to reach contrast down to 5 × 10−7 and make astrometry at sub-mas level with the instrument in the actual conditions. A number of critical issues have been identified. The resolution of these problems could allow to further improve the performance of the instrument.


2012 ◽  
Vol 8 (S293) ◽  
pp. 442-444
Author(s):  
Graeme S. Salter ◽  
Niranjan A. Thatte ◽  
Matthias Tecza ◽  
Fraser Clarke ◽  
Markus E. Kasper

AbstractEarly design studies for the future Exo-Planet Imaging Camera and Specrotgraph (EPICS) on the European Extremely Large Telescope (E-ELT) show the ability to probe the region of super-Earths in the habitable zone of stars within 5pc (including Gilese 581d). However, these planets will be lost to us if the correct choice of integral field spectrograph (IFS) technology is not selected for such an instrument the ability to fit and remove the speckle noise that remains is crucial to reaching these contrasts.We conclusively demonstrate, though the use of an experimental setup producing an artificial speckle, that slicer based IFSs and post-processing using spectral deconvolution can achieve speckle rejection factors exceeding 103. Contrary to popular belief, we do not find any evidence that this choice of IFS technology limits the achievable contrast. Coupled with extreme adaptive optics and high performance coronographs, a slicer based integral field spectrograph could achieve contrasts exceeding 109, enabling these super-Earths to be detected in the habitable zone of nearby stars, making it an attractive option for the next generation of instruments being designed for the direct detection of extra solar planets.


2010 ◽  
Author(s):  
Katherine B. Follette ◽  
Laird M. Close ◽  
Derek Kopon ◽  
Jared R. Males ◽  
Victor Gasho ◽  
...  

2020 ◽  
Vol 645 ◽  
pp. A12
Author(s):  
B. Balmaverde ◽  
A. Capetti ◽  
A. Marconi ◽  
G. Venturi ◽  
M. Chiaberge ◽  
...  

We present the final observations of a complete sample of 37 radio galaxies from the Third Cambridge Catalogue (3C) with redshift < 0.3 and declination < 20° obtained with the VLT/MUSE optical integral field spectrograph. These data were obtained as part of the MUse RAdio Loud Emission line Snapshot (MURALES) survey with the main goal of exploring the AGN feedback process in the most powerful radio sources. We present the data analysis and, for each source, the resulting emission line images and the 2D gas velocity field. Thanks to the unprecedented depth these observations reveal emission line regions (ELRs) extending several tens of kiloparsec in most objects. The gas velocity shows ordered rotation in 25 galaxies, but in several sources it is highly complex. We find that the 3C sources show a connection between radio morphology and emission line properties. In the ten FR I sources the line emission region is generally compact, only a few kpc in size; only in one case does it exceed the size of the host. Conversely, all but two of the FR II galaxies show large-scale structures of ionized gas. The median extent is 16 kpc with the maximum reaching a size of ∼80 kpc. There are no apparent differences in extent or strength between the ELR properties of the FR II sources of high and low gas excitation. We confirm that the previous optical identification of 3C 258 is incorrect: this radio source is likely associated with a quasi-stellar object at z ∼ 1.54.


Author(s):  
M. Mingozzi ◽  
G. Venturi ◽  
F. Mannucci ◽  
A. Marconi ◽  
G. Cresci

The central regions of Seyfert galaxies, comprising broad and narrow line regions and the inner parts of galaxy disk and bulge, is characterized by a complex interplay among many physical effects. Specifically, it is shaped by the influence of the central black hole, producing ionization by an hard continuum and gas outflows. The integral-field spectrograph MUSE at the ESO VLT allows to carry out a detailed study of these regions to obtain their ionization, dynamical, and metallicity properties. Here we present some highlights of the MAGNUM survey which is designed to study the central regions of a sample of nearby (D > 500 pc) Seyfert galaxies. We describe the rationale of the survey, the data analysis techniques used to extract information on ionization and dynamics, and the results for one galaxy, Centaurus A.


2018 ◽  
Vol 130 (988) ◽  
pp. 065001 ◽  
Author(s):  
Seth R. Meeker ◽  
Benjamin A. Mazin ◽  
Alex B. Walter ◽  
Paschal Strader ◽  
Neelay Fruitwala ◽  
...  

Author(s):  
Sebastiaan Y. Haffert ◽  
Jared Males ◽  
Laird Close ◽  
Joseph Long ◽  
Lauren Schatz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document