Multifrequency space time orthogonal projection (MF-STOP): a radar signal processing algorithm for detecting and discriminating targets in heavy clutter

2007 ◽  
Author(s):  
Yalew Tamrat ◽  
Clancy Hatleberg
Author(s):  
Yuxin Qin ◽  
Yu Chen

The effect of ship navigation radar signal processing has a great impact on the overall performance of the radar system. In this paper, the signal processing algorithm is studied. Firstly, the principle of radar azimuth and distance monitoring is introduced, then the pulse accumulation algorithm and median filtering algorithm are analyzed, and finally a sea clutter suppression algorithm based on sensitivity time control (STC) and a rain and snow clutter suppression algorithm based on constant false alarm rate are designed to improve the target monitoring performance of radar. In the test of the algorithm, the radar signal processing algorithm designed in this study has good precision as monitoring error of the target's azimuth and distance is controlled within 1%; and it also has a better suppression effect of sea clutter and rain and snow clutter, which can suppress the clutter well, improve the target clarity, and ensure the safe navigation of the ship. The experiment proves the effectiveness of the proposed algorithm and provides some theoretical basis for the better processing of radar signals, which is beneficial to improve the environment perception ability of ships in harsh environments and promote the further development of the navigation industry.


2020 ◽  
Vol 16 ◽  

The effect of ship navigation radar signal processing has a great impact on the overall performance of the radar system. In this paper, the signal processing algorithm is studied. Firstly, the principle of radar azimuth and distance monitoring is introduced, then the pulse accumulation algorithm and median filtering algorithm are analyzed, and finally a sea clutter suppression algorithm based on sensitivity time control (STC) and a rain and snow clutter suppression algorithm based on constant false alarm rate are designed in order to improve the target monitoring performance of radar. In the test of the algorithm, the radar signal processing algorithm designed in this paper has good precision as monitoring error of the target's azimuth and distance is controlled within 1%; and it also has a better suppression effect of sea clutter and rain and snow clutter, which can suppress the clutter well, improve the target clarity, and ensure the safe navigation of the ship. The experiment proves the effectiveness of the proposed algorithm and provides some theoretical basis for the better processing of radar signals, which is beneficial to improve the environment perception ability of ships in harsh environments and promote the further development of the navigation industry.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8314
Author(s):  
Chen Su ◽  
Chuanyun Zou ◽  
Liangyu Jiao ◽  
Qianglin Zhang

In this paper, the multiple-input, multiple-output (MIMO) radar signal processing algorithm is efficiently employed as an anticollision methodology for the identification of multiple chipless radio-frequency identification (RFID) tags. Tag-identifying methods for conventional chipped RFID tags rely mostly on the processing capabilities of application-specific integrated circuits (ASICs). In cases where more than one chipless tag exists in the same area, traditional methods are not sufficient to successfully read and distinguish the IDs, while the direction of each chipless tag can be obtained by applying MIMO technology to the backscattering signal. In order to read the IDs of the tags, beamforming is used to change the main beam direction of the antenna array and to receive the tag backscattered signal. On this basis, the RCS of the tags can be retrieved, and associated IDs can be identified. In the simulation, two tags with different IDs were placed away from each other. The IDs of the tags were successfully identified using the presented algorithm. The simulation result shows that tags with a distance of 0.88 m in azimuth can be read by a MIMO reader with eight antennas from 3 m away.


2020 ◽  
pp. 1-10
Author(s):  
Chunhuan Song ◽  
Fucai Qian

With its unique array arrangement, the detection system radar has both space diversity gain and waveform diversity gain, and is currently recognized as a stealth target buster. The detection system radar is applied to a high-speed moving platform. Using distributed cooperative detection technology, non-coherent fusion detection based on signals can further improve the detection of stealthy targets. Aiming at the high-speed motion radar signal processing algorithm, this paper mainly studies the following three aspects: the first content is the analysis of the waveform characteristics: the basic principles and characteristics of the radar are explained; then the three orthogonal waveforms commonly used in the radar are introduced, including Stepwise frequency division chirp signal, quadrature phase coded signal and mixed-signal; the second content detects radar targets and analyzes the correlation between the scattering coefficients of different radar channels; for scenarios where the scattering coefficients between the channels are non-coherent Introduced two kinds of non-coherent fusion detectors based on generalized likelihood ratio algorithm: centralized detector and double threshold detector; the third content radar multi-target pairing is aimed at the problem of radar multi-target pairing with large inertial navigation error. A multi-target pairing algorithm that uses target delay information and combines the radar’s multi-channel information redundancy characteristics is presented. An expression for judging the correctness of target pairing is derived, and the target pairing steps are given. The relationship between the amount of algorithm operation and the number of radar stations and the number of targets is analyzed in conclusion.


Sign in / Sign up

Export Citation Format

Share Document