Image transfer through a rough water surface: laboratory experiments

2007 ◽  
Author(s):  
V. Y. Osadchy ◽  
V. Savtchenko ◽  
O. Frantsuzov ◽  
N. Rybalka
2019 ◽  
Vol 7 (8) ◽  
pp. 266 ◽  
Author(s):  
Ryan P. Mulligan ◽  
W. Andy Take ◽  
Gemma K. Bullard

Tsunamis are generated when landslides transfer momentum to water, and these waves are major hazards in the mountainous coastal areas of lakes, reservoir, and fjords. In this study, the influence of slide mobility on wave generation is investigated using new: (i) experimental observations; (ii) theoretical relationships; and (iii) non-hydrostatic numerical predictions of the water surface and flow velocity evolution. This is accomplished by comparing landslides with low and high mobility and computing the momentum flux from landslides to water based on data collected in laboratory experiments. These slides have different materials, different impact velocities, different submarine runout distances, and generate very different waves. The waves evolve differently along the length of the waves’ flume, and the experimental results are in close agreement with high-resolution phase-resolving simulations. In this short communication, we describe new research on landslide generated waves conducted at Queen’s University, Canada, and presented at Coastlab18 in Santander, Spain.


2002 ◽  
Vol 29 (3) ◽  
pp. 400-408 ◽  
Author(s):  
E C Carriveau ◽  
R E Baddour ◽  
G A Kopp

Each winter in Canada, operational difficulties are encountered at various water works resulting from intake blockages caused by frazil ice entrainment. In a lake setting, frazil is a surface phenomenon, the strong downward current produced by a swirling flow, with an intake vortex present, provides a mechanism by which frazil is transported from the water surface to the submerged intake below. Laboratory experiments were conducted to study the entrainment envelope associated with swirling and non-swirling flows into submerged water intakes. Three-dimensional velocity measurements were made with an acoustic Doppler velocimeter. The results clearly show that the entrainment envelope for swirling flow is several times larger than that for non-swirling flow. This paper details, for a given set of conditions, the differences in the non-swirling and swirling flow entrainment envelopes and emphasizes the potential difficulties with frazil ice that vortices can cause at intakes.Key words: vortex, dye-core vortex, submerged hydraulic intake, entrainment envelope, three-dimensional velocity measurements, acoustic Doppler velocimeter.


2001 ◽  
Vol 40 (9) ◽  
pp. 1343 ◽  
Author(s):  
Nicholas R. Nalli ◽  
William L. Smith ◽  
Bormin Huang

2004 ◽  
Author(s):  
Yuri A. Pirogov ◽  
Andrey I. Dubina

2021 ◽  
Vol 2116 (1) ◽  
pp. 012038
Author(s):  
Alexander A Fedorets ◽  
Leonid A Dombrovsky ◽  
Dmitry V Shcherbakov ◽  
Mark Frenkel ◽  
Edward Bormashenko ◽  
...  

Abstract The effect of temperature profile of the water layer surface on the formation and structure of a levitating droplet cluster is studied in the paper. The laboratory experiments indicate that a local temperature maximum of water is a necessary condition for the formation of a cluster. A quantitative criterium of transformation of a monolayer of randomly positioned microdroplets to a self-assembled cluster of relatively large droplets is obtained.


1998 ◽  
Vol 369 ◽  
pp. 175-190 ◽  
Author(s):  
LI LI ◽  
ROBERT A. DALRYMPLE

The steady undertow created by waves breaking at a beach and slowly flowing offshore can become unstable and create a train of submerged offshore migrating vortices with shorter length scales and longer time scales than the incident waves, as shown by Matsunaga, Takehara & Awaya (1988, 1994). These vortices rotate about horizontal axes parallel to the shoreline. Our larger-scale laboratory experiments show that an additional layer of vortices can exist over the water depth, with vortices near the water surface rotating in the same direction as the wave-induced water particle trajectories, while those located at about mid-depth rotate in the opposite direction.A theoretical and numerical analysis shows that these vortices are due to instabilities of the undertow. Far offshore of the surf zone, the vortex trains decay because the velocity profile for the undertow becomes linear over depth, hence neutrally stable to any disturbances.


2014 ◽  
Vol 749 ◽  
pp. 577-596 ◽  
Author(s):  
Yongshuai Chen ◽  
Harry Yeh

AbstractCollisions of counter-propagating solitary waves are investigated experimentally. Precision measurements of water-surface profiles are made with the use of the laser induced fluorescence (LIF) technique. During the collision, the maximum wave amplitude exceeds that calculated by the superposition of the incident solitary waves, and agrees well with both the asymptotic prediction of Su & Mirie (J. Fluid Mech., vol. 98, 1980, pp. 509–525) and the numerical simulation of Craig et al. (Phys. Fluids, vol. 18, 2006, 057106). The collision causes attenuation in wave amplitude: the larger the wave, the greater the relative reduction in amplitude. The collision also leaves imprints on the interacting waves with phase shifts and small dispersive trailing waves. Maxworthy’s (J. Fluid Mech., vol. 76, 1976, pp. 177–185) experimental results show that the phase shift is independent of incident wave amplitude. On the contrary, our laboratory results exhibit the dependence of wave amplitude that is in support of Su & Mirie’s theory. Though the dispersive trailing waves are very small and transient, the measured amplitude and wavelength are in good agreement with Su & Mirie’s theory. Furthermore, we investigate the symmetric head-on collision of the highest waves possible in our laboratory. Our laboratory results show that the runup and rundown of the collision are not simple reversible processes. The rundown motion causes penetration of the water surface below the still-water level. This penetration causes the post-collision waveform to be asymmetric, with each departing wave tilting slightly backward with respect to the direction of its propagation; the penetration is also the origin of the secondary dispersive trailing wavetrain. The present work extends the studies of head-on collisions to oblique collisions. The theory of Su & Mirie, which was developed only for head-on collisions, predicts well in oblique collision cases, which suggests that the obliqueness of the collision may not be important for this ‘weak’ interaction process.


Sign in / Sign up

Export Citation Format

Share Document