Thermo-emission of small-scale rough water surface

2004 ◽  
Author(s):  
Yuri A. Pirogov ◽  
Andrey I. Dubina
2021 ◽  
Author(s):  
Dmitry Kozlov ◽  
Yuliya Troitskaya

<p>The present work is a theoretical study of the hydrodynamic instability of the water-air interface, the development of which may result in the “bag breakup” fragmentation. This phenomenon begins with the appearance of a small-scale elevation of the water surface, which increases and turns into a small liquid “sail” or “bag”, limited by a thicker rim, and finally bursts into splashes. According to the results of laboratory experiments [1]–[3], the “bag breakup” fragmentation is the most effective droplet generation mechanism at hurricane wind speeds.</p><p>We propose a hypothesis that the formation of the initial elevations of the water surface, which undergoes fragmentation, is caused by the hydrodynamic instability of disturbances of the wind drift current in the water. A weakly nonlinear stage of instability in the form of a resonant three-wave interaction has been studied. It has been discovered that the nonlinear resonant interaction of a triad of wind drift perturbations, of which one wave is directed along the flow, and the other two are directed at an angle to the flow, leads to an explosive increase of amplitudes as it was in [4]. Within the framework of the piecewise-continuous model of the drift current profile, the characteristic time and spatial scales of disturbances have been found and it has been shown that their characteristic dependences on the air friction velocity are consistent with the previously obtained experimental data.</p><p>Acknowledgements</p><p>This work was supported by RFBR projects (19-35-90053, 19-05-00249) and the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”.</p><p> </p>


2011 ◽  
Vol 681 ◽  
pp. 462-498 ◽  
Author(s):  
DAN LIBERZON ◽  
LEV SHEMER

Despite a significant progress and numerous publications over the last few decades a comprehensive understanding of the process of waves' excitation by wind still has not been achieved. The main goal of the present work was to provide as comprehensive as possible set of experimental data that can be quantitatively compared with theoretical models. Measurements at various air flow rates and at numerous fetches were carried out in a small scale, closed-loop, 5 m long wind wave flume. Mean airflow velocity and fluctuations of the static pressure were measured at 38 vertical locations above the mean water surface simultaneously with determination of instantaneous water surface elevations by wave gauges. Instantaneous fluctuations of two velocity components were recorded for all vertical locations at a single fetch. The water surface drift velocity was determined by the particle tracking velocimetry (PTV) method. Evaluation of spatial growth rates of waves at various frequencies was performed using wave gauge records at various fetches. Phase relations between various signals were established by cross-spectral analysis. Waves' celerities and pressure fluctuation phase lags relative to the surface elevation were determined. Pressure values at the water surface were determined by extrapolating the measured vertical profile of pressure fluctuations to the mean water level and used to calculate the form drag and consequently the energy transfer rates from wind to waves. Directly obtained spatial growth rates were compared with those obtained from energy transfer calculations, as well as with previously available data.


2020 ◽  
Author(s):  
Yuliya Troitskaya ◽  
Alexander Kandaurov ◽  
Daniil Sergeev ◽  
Olga Ermakova ◽  
Dmitrii Kozlov ◽  
...  

<p>Showing the record strengths and growth-rates, a number of recent hurricanes have highlighted needs for improving forecasts of tropical cyclone intensities most sensitive to models of the air-sea coupling. Especially challenging is the nature and effect of the very small-scale phenomena, the sea-spray and foam, supposed to strongly affecting the momentum- and heat- air-sea fluxes at strong winds. This talk will focus on our progress in understanding and describing these "micro-scale" processes, their physical properties, the spray and foam mediated air-sea fluxes and the impact on the development of marine storms.</p><p>The starting points for this study were two laboratory experiments. The first one was designed for investigation of the spray generation mechanisms at high winds. We found out 3 dominant spray generating mechanisms: stretching liquid ligaments, bursting bubbles, splashing of the falling droplets and "bag-breakup". We investigated the efficiency spray-production mechanisms and developed the empirical statistics of the numbers of the spray generating events of each type. Basing on the "white-cap method" we found out the dependence of the spray-generating events on the wind fetch. The main attention was paid to the "bag-breakup" mechanism. Here we studied in detail the statistics of spray produced from one "bag-breakup" event. Basing on these developments, we estimated heat and momentum fluxes from the spray-generating events of different types and found out the dominant role of the "bag-breakup" mechanism.</p><p>To estimate the direct heat and momentum fluxes from the ocean surface to the atmosphere, we studied in the special experiment the foam impact on the short-wave part of the surface waves and the heat momentum exchange in the atmospheric boundary layer at high winds. Based on these results, we suggest a simple model for the aerodynamic and temperature roughness and the eddy viscosity in the turbulent boundary layer over a fractionally foam-covered water surface.</p><p>The synergetic effect of foam at the water surface and spray in the marine atmospheric boundary layer on ocean surface resistance at high winds is estimated so as to be able to explain the observed peculiarities of the air-sea fluxes at stormy conditions. Calculations within the nonhydrostatic axisymmetric model show, that the "microphysics" of the air-sea coupling significantly accelerate development of the ocean storm.</p><p>This work was supported by RFBR grant 19-05-00249 and RSF grant 19-17-00209.</p>


2001 ◽  
Vol 40 (9) ◽  
pp. 1343 ◽  
Author(s):  
Nicholas R. Nalli ◽  
William L. Smith ◽  
Bormin Huang

2012 ◽  
Vol 1 (33) ◽  
pp. 81 ◽  
Author(s):  
Philippe St-Germain ◽  
Ioan Nistor ◽  
Ronald Townsend

In this paper, the simulation of the violent impact of tsunami-like bores with a square column is performed using a single-phase, weakly compressible three-dimensional Smoothed Particle Hydrodynamics (SPH) model. In order to avoid large fluctuations in the pressure field and to obtain accurate simulations of the hydrodynamic forces, a Riemann solver-based formulation of the SPH method is utilized. Large-scale physical experiments conducted by the authors are reproduced using the numerical model. Time-histories of the water surface elevation as well as time-histories of the pressure distribution and net total force acting on the column are successfully compared. As observed in previous breaking wave impact studies, results show that the magnitude and duration of the impulsive force at initial bore impact depend on the degree of entrapped air in the bore-front. Although ensuring a stable pressure field, the Riemann solver-based SPH scheme is believed to induce excessive numerical diffusion, as sudden and large water surface deformations, such as splashing at initial bore impact, are marginally reproduced. To investigate this particular issue, the small-scale physical experiment of Kleefsman et al. (2005) is also considered and modeled.


2020 ◽  
Author(s):  
◽  
Zhentao Wang

Wetlands provide many benefits for humans and the natural environment, but land use changes have reduced their number and areal extent. Interest has grown in examining surface water distribution both spatially and temporally, which help to determine those locations for which there is the greatest priority for wetland preservation or mitigation. This research first proposes a methodology to support that examination through the application of open channel hydraulics principles to flow over a landscape. The methodology, implemented through a Python script, automatically extracts landscape characteristics from a DEM and calculates hydraulic parameters. The parameters are used to determine water surface profiles using the Modified Euler's method. Multiple tests show that the script accurately produces profiles of flow between wetlands over a landscape. Such determinations are the first step in understanding where water will exist on the surface and where there may be infiltration to support wetland functions. Furthermore, a water balance methodology (where water will exist, how much will be there and for what period of time) is developed and demonstrated that focuses on small depressions, as locations where conservation efforts to create or regenerate wetlands may be achievable. Integral to this analysis is a detailed treatment of depressions in the landscape. Utilizing a digital elevation model, the methodology incorporates a cell-by-cell analysis to appropriately capture small-scale processes. Instead of treating these vital depressions as errors or being insignificant to the water balance calculations, they are retained. Flow direction is dynamically determined by the land surface and water characteristics. With potentially shallow flow in depressions, the use of Manning's equation incorporates stratified flow where differing values of Manning's n describe flow through and above vegetation. This real-time overland runoff model based on a short time step is implemented through a Python code using ArcGIS. Exercises on an artificial DEM with simulated precipitation demonstrate the ability of the model to accurately represent hydraulics principles. Simulations of two field sites over a period of a year, and incorporating precipitation, infiltration and evapotranspiration, demonstrate the ability to track water surface locations and extents with an accuracy necessary for decision making. Additionally, this research optimizes the Green Ampt infiltration model which allows for the calculation of infiltration rates with unsteady rainfall and then couples this Modified Green Ampt (MGA) model with a previously developed Dynamic Flow Direction (DFD) model to simulate overland flow. To test the accuracy of the improvements, results show shorter times to ponding, smaller total infiltration at the time of ponding and larger total infiltration with this Modified Green Ampt (MGA) model as compared with the results with a Traditional Green Ampt (TGA) model. Additionally, coupled with the DFD model, the MGA model takes surface water movement into consideration. The total water volume on the landscape with MGA is less than predicted by the TGA. Additionally, the inundation area is deeper than 0.05 m with MGA and is also smaller than the result with the TGA.


2005 ◽  
Vol 36 (1) ◽  
pp. 85-98 ◽  
Author(s):  
Gerald Schernewski ◽  
Victor Podsetchine ◽  
Timo Huttula

We present an example of small scale (10–100 m) horizontal, subsurface patchiness of phytoplankton (Ceratium) during an intensive bloom in August 1993 and link it to the flow field. In the small Lake Belau (1.1 km2) in northern Germany large areas of the water surface are sheltered from wind, due to vegetation. Wind sheltering effects decrease with wind speed and below 2 m/s a spatially homogeneous wind field is observed. Under weak wind conditions near-surface Ceratium patches with local chlorophyll-concentrations up to 200 mg/m3 were observed in the south bay (0.3 m depth) as well as in parts of the central basin (1 m depth). Detailed flow simulations show very good agreement between location and size of current gyres and phytoplankton patches. Inside the gyres we find low flow velocities with low vertical turbulence. This allows Ceratium to form distinct vertical layers with high densities close to the water surface, according to the light gradient. Especially in the south bay flow eddies are determined by the course of the coastline and their location and intensity is, to a large degree, independent of prevailing wind directions.


Sign in / Sign up

Export Citation Format

Share Document