Spectral retrieval of latent heating profiles from TRMM PR data: comparisons of lookup tables from two- and three-dimensional simulations

Author(s):  
Shoichi Shige ◽  
Yukari N. Takayabu ◽  
Satoshi Kida ◽  
Wei-Kuo Tao ◽  
Xiping Zeng ◽  
...  
2009 ◽  
Vol 22 (20) ◽  
pp. 5577-5594 ◽  
Author(s):  
Shoichi Shige ◽  
Yukari N. Takayabu ◽  
Satoshi Kida ◽  
Wei-Kuo Tao ◽  
Xiping Zeng ◽  
...  

Abstract The spectral latent heating (SLH) algorithm was developed to estimate latent heating profiles for the Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR). The method uses TRMM PR information (precipitation-top height, precipitation rates at the surface and melting level, and rain type) to select heating profiles from lookup tables (LUTs). LUTs for the three rain types—convective, shallow stratiform, and anvil rain (deep stratiform with a melting level)—were derived from numerical simulations of tropical cloud systems from the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) using a cloud-resolving model (CRM). The two-dimensional (2D) CRM was used in previous studies. The availability of exponentially increasing computer capabilities has resulted in three-dimensional (3D) CRM simulations for multiday periods becoming increasingly prevalent. In this study, LUTs from the 2D and 3D simulations are compared. Using the LUTs from 3D simulations results in less agreement between the SLH-retrieved heating and sounding-based heating for the South China Sea Monsoon Experiment (SCSMEX). The level of SLH-estimated maximum heating is lower than that of the sounding-derived maximum heating. This is explained by the fact that using the 3D LUTs results in stronger convective heating and weaker stratiform heating above the melting level than is the case if using the 2D LUTs. More condensate is generated in and carried from the convective region in the 3D model than in the 2D model, and less condensate is produced by the stratiform region’s own upward motion.


2007 ◽  
Vol 46 (7) ◽  
pp. 1098-1124 ◽  
Author(s):  
Shoichi Shige ◽  
Yukari N. Takayabu ◽  
Wei-Kuo Tao ◽  
Chung-Lin Shie

Abstract The spectral latent heating (SLH) algorithm was developed for the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) in Part I of this study. The method uses PR information [precipitation-top height (PTH), precipitation rates at the surface and melting level, and rain type] to select heating profiles from lookup tables. Heating-profile lookup tables for the three rain types—convective, shallow stratiform, and anvil rain (deep stratiform with a melting level)—were derived from numerical simulations of tropical cloud systems from the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) utilizing a cloud-resolving model (CRM). To assess its global application to TRMM PR data, the universality of the lookup tables from the TOGA COARE simulations is examined in this paper. Heating profiles are reconstructed from CRM-simulated parameters (i.e., PTH, precipitation rates at the surface and melting level, and rain type) and are compared with the true CRM-simulated heating profiles, which are computed directly by the model thermodynamic equation. CRM-simulated data from the Global Atmospheric Research Program Atlantic Tropical Experiment (GATE), South China Sea Monsoon Experiment (SCSMEX), and Kwajalein Experiment (KWAJEX) are used as a consistency check. The consistency check reveals discrepancies between the SLH-reconstructed and Goddard Cumulus Ensemble (GCE)-simulated heating above the melting level in the convective region and at the melting level in the stratiform region that are attributable to the TOGA COARE table. Discrepancies in the convective region are due to differences in the vertical distribution of deep convective heating due to the relative importance of liquid and ice water processes, which varies from case to case. Discrepancies in the stratiform region are due to differences in the level separating upper-level heating and lower-level cooling. Based on these results, improvements were made to the SLH algorithm. Convective heating retrieval is now separated into upper-level heating due to ice processes and lower-level heating due to liquid water processes. In the stratiform region, the heating profile is shifted up or down by matching the melting level in the TOGA COARE lookup table with the observed one. Consistency checks indicate the revised SLH algorithm performs much better for both the convective and stratiform components than does the original one. The revised SLH algorithm was applied to PR data, and the results were compared with heating profiles derived diagnostically from SCSMEX sounding data. Key features of the vertical profiles agree well—in particular, the level of maximum heating. The revised SLH algorithm was also applied to PR data for February 1998 and February 1999. The results are compared with heating profiles derived by the convective–stratiform heating (CSH) algorithm. Because observed information on precipitation depth is used in addition to precipitation type and intensity, differences between shallow and deep convection are more distinct in the SLH algorithm in comparison with the CSH algorithm.


2018 ◽  
Vol 31 (7) ◽  
pp. 2563-2577 ◽  
Author(s):  
L. Huaman ◽  
C. Schumacher

In the east Pacific (EP) intertropical convergence zone (ITCZ), Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) latent heating retrievals suggest a top-heavy structure; however, light precipitation and its associated low-level heating are underestimated by the PR. This study uses stratiform and deep convective precipitation from the TRMM PR and shallow precipitation from the more sensitive CloudSat radar to assess the seasonal latent heating structure in the EP ITCZ (130°–90°W) for 1998–2014. This study also uses reanalyses (MERRA-2, ERA-Interim, and NCEP–NCAR) to analyze the meridional circulation linked to variations in ITCZ heating. The TRMM/ CloudSat heating profiles suggest a distinct seasonality. During DJF, latent heating peaks at 800 hPa because of the predominance of shallow convection and rises to 700 hPa during MAM as the contribution from deep convective rain increases. During JJA and SON, stratiform precipitation increases and the latent heating has a double peak at 700 and 400 hPa. Additionally, the EP ITCZ heating has a meridional slope throughout most of the year as a result of the prevalence of shallow (deep) convection in the southern (northern) part of the ITCZ. While the reanalyses agree that the most bottom-heavy heating occurs in DJF and the most top-heavy heating occurs in JJA, they underestimate heating aloft compared to the satellite retrievals throughout the year and show varying ability in representing the shallow meridional circulation and deeper Hadley cell overturning.


2004 ◽  
Vol 43 (8) ◽  
pp. 1095-1113 ◽  
Author(s):  
Shoichi Shige ◽  
Yukari N. Takayabu ◽  
Wei-Kuo Tao ◽  
Daniel E. Johnson

Sign in / Sign up

Export Citation Format

Share Document