Assessment of super-resolution for face recognition from very-low resolution images in sensor networks

Author(s):  
James R. Roeder ◽  
Sergio D. Cabrera
2019 ◽  
Vol 25 (2) ◽  
pp. 256-279 ◽  
Author(s):  
Amy Dawel ◽  
Tsz Ying Wong ◽  
Jodie McMorrow ◽  
Callin Ivanovici ◽  
Xuming He ◽  
...  

2021 ◽  
Vol 2083 (4) ◽  
pp. 042026
Author(s):  
Lizhuo Gao

Abstract Super resolution is applied in many digital image fields. In many cases, only a set of low-resolution images can be obtained, but the image needs a higher resolution, and then SR needs to be applied. SR technology has undergone years of development. Among them, SRGAN is the key work to introduce GAN into the SR field, which can truly restore a large number of details on the basis of low-pixel pictures. ESRGAN is a further improvement on SRGAN. By removing the BN layer in SRGAN, the effect of artifacts in SRGAN is eliminated. However, there is still a problem that the restoration of information on small and medium scales is not accurate enough. The proposed ERDBNet improve the model on the basis of ESRGAN, and use the ERDB block to replace the original RRDB block. The new structure uses a three-layer dense block to replace the original dense block, and a residual structure of the starting point is added to each dense block. The pre-trained network can reach a PSNR of 30.425 after 200k iterations, and the minimum floating PSNR is only 30.213. Compared with the original structure, it is more stable and performs better in the detail recovery of many low-pixel images.


2020 ◽  
Vol 53 (7-8) ◽  
pp. 1429-1439
Author(s):  
Ziwei Zhang ◽  
Yangjing Shi ◽  
Xiaoshi Zhou ◽  
Hongfei Kan ◽  
Juan Wen

When low-resolution face images are used for face recognition, the model accuracy is substantially decreased. How to recover high-resolution face features from low-resolution images precisely and efficiently is an essential subtask in face recognition. In this study, we introduce shuffle block SRGAN, a new image super-resolution network inspired by the SRGAN structure. By replacing the residual blocks with shuffle blocks, we can achieve efficient super-resolution reconstruction. Furthermore, by considering the generated image quality in the loss function, we can obtain more realistic super-resolution images. We train and test SB-SRGAN in three public face image datasets and use transfer learning strategy during the training process. The experimental results show that shuffle block SRGAN can achieve desirable image super-resolution performance with respect to visual effect as well as the peak signal-to-noise ratio and structure similarity index method metrics, compared with the performance attained by the other chosen deep-leaning models.


Author(s):  
Dong Seon Cheng ◽  
Marco Cristani ◽  
Vittorio Murino

Image super-resolution is one of the most appealing applications of image processing, capable of retrieving a high resolution image by fusing several registered low resolution images depicting an object of interest. However, employing super-resolution in video data is challenging: a video sequence generally contains a lot of scattered information regarding several objects of interest in cluttered scenes. Especially with hand-held cameras, the overall quality may be poor due to low resolution or unsteadiness. The objective of this chapter is to demonstrate why standard image super-resolution fails in video data, which are the problems that arise, and how we can overcome these problems. In our first contribution, we propose a novel Bayesian framework for super-resolution of persistent objects of interest in video sequences. We call this process Distillation. In the traditional formulation of the image super-resolution problem, the observed target is (1) always the same, (2) acquired using a camera making small movements, and (3) found in a number of low resolution images sufficient to recover high-frequency information. These assumptions are usually unsatisfied in real world video acquisitions and often beyond the control of the video operator. With Distillation, we aim to extend and to generalize the image super-resolution task, embedding it in a structured framework that accurately distills all the informative bits of an object of interest. In practice, the Distillation process: i) individuates, in a semi supervised way, a set of objects of interest, clustering the related video frames and registering them with respect to global rigid transformations; ii) for each one, produces a high resolution image, by weighting each pixel according to the information retrieved about the object of interest. As a second contribution, we extend the Distillation process to deal with objects of interest whose transformations in the appearance are not (only) rigid. Such process, built on top of the Distillation, is hierarchical, in the sense that a process of clustering is applied recursively, beginning with the analysis of whole frames, and selectively focusing on smaller sub-regions whose isolated motion can be reasonably assumed as rigid. The ultimate product of the overall process is a strip of images that describe at high resolution the dynamics of the video, switching between alternative local descriptions in response to visual changes. Our approach is first tested on synthetic data, obtaining encouraging comparative results with respect to known super-resolution techniques, and a good robustness against noise. Second, real data coming from different videos are considered, trying to solve the major details of the objects in motion.


2019 ◽  
Vol 78 ◽  
pp. 236-245 ◽  
Author(s):  
Dewan Fahim Noor ◽  
Yue Li ◽  
Zhu Li ◽  
Shuvra Bhattacharyya ◽  
George York

Author(s):  
Shan Xue ◽  
Hong Zhu

In video surveillance, the captured face images are usually suffered from low-resolution (LR), besides, not all the probe images have mates in the gallery under the premise that only a single frontal high-resolution (HR) face image per subject. To address this problem, a novel face recognition framework called recursive label propagation based on statistical classification (ReLPBSC) has been proposed in this paper. Firstly, we employ VGG to extract robust discriminative feature vectors to represent each face. Then we select the corresponding LR face in the probe for each HR gallery face by similarity. Based on the picked HR–LR pairs, ReLPBSC is implemented for recognition. The main contributions of the proposed approach are as follows: (i) Inspired by substantial achievements of deep learning methods, VGG is adopted to achieve discriminative representation for LR faces to avoid the super-resolution steps; (ii) the accepted and rejected threshold parameters, which are not fixed in face recognition, can be achieved with ReLPBSC adaptively; (iii) the unreliable subjects never enrolled in the gallery can be rejected automatically with designed methods. Experimental results in [Formula: see text] pixels resolution show that the proposed method can achieve 86.64% recall rate while keeping 100% precision.


Sign in / Sign up

Export Citation Format

Share Document