Architecture for next-generation massively parallel maskless lithography system (MPML2)

Author(s):  
Ming-Shing Su ◽  
Kuen-Yu Tsai ◽  
Yi-Chang Lu ◽  
Yu-Hsuan Kuo ◽  
Ting-Hang Pei ◽  
...  
2021 ◽  
Vol 179 ◽  
pp. 590-597
Author(s):  
Maryam Manaa Al-Shammari ◽  
Asrar Haque ◽  
M.M. Hafizur Rahman

2009 ◽  
Vol 55 (4) ◽  
pp. 641-658 ◽  
Author(s):  
Karl V Voelkerding ◽  
Shale A Dames ◽  
Jacob D Durtschi

Abstract Background: For the past 30 years, the Sanger method has been the dominant approach and gold standard for DNA sequencing. The commercial launch of the first massively parallel pyrosequencing platform in 2005 ushered in the new era of high-throughput genomic analysis now referred to as next-generation sequencing (NGS). Content: This review describes fundamental principles of commercially available NGS platforms. Although the platforms differ in their engineering configurations and sequencing chemistries, they share a technical paradigm in that sequencing of spatially separated, clonally amplified DNA templates or single DNA molecules is performed in a flow cell in a massively parallel manner. Through iterative cycles of polymerase-mediated nucleotide extensions or, in one approach, through successive oligonucleotide ligations, sequence outputs in the range of hundreds of megabases to gigabases are now obtained routinely. Highlighted in this review are the impact of NGS on basic research, bioinformatics considerations, and translation of this technology into clinical diagnostics. Also presented is a view into future technologies, including real-time single-molecule DNA sequencing and nanopore-based sequencing. Summary: In the relatively short time frame since 2005, NGS has fundamentally altered genomics research and allowed investigators to conduct experiments that were previously not technically feasible or affordable. The various technologies that constitute this new paradigm continue to evolve, and further improvements in technology robustness and process streamlining will pave the path for translation into clinical diagnostics.


PLoS ONE ◽  
2011 ◽  
Vol 6 (12) ◽  
pp. e28879 ◽  
Author(s):  
Gordon M. Daly ◽  
Nick Bexfield ◽  
Judith Heaney ◽  
Sam Stubbs ◽  
Antonia P. Mayer ◽  
...  

2010 ◽  
Vol 76 (12) ◽  
pp. 3863-3868 ◽  
Author(s):  
J. Kirk Harris ◽  
Jason W. Sahl ◽  
Todd A. Castoe ◽  
Brandie D. Wagner ◽  
David D. Pollock ◽  
...  

ABSTRACT Constructing mixtures of tagged or bar-coded DNAs for sequencing is an important requirement for the efficient use of next-generation sequencers in applications where limited sequence data are required per sample. There are many applications in which next-generation sequencing can be used effectively to sequence large mixed samples; an example is the characterization of microbial communities where ≤1,000 sequences per samples are adequate to address research questions. Thus, it is possible to examine hundreds to thousands of samples per run on massively parallel next-generation sequencers. However, the cost savings for efficient utilization of sequence capacity is realized only if the production and management costs associated with construction of multiplex pools are also scalable. One critical step in multiplex pool construction is the normalization process, whereby equimolar amounts of each amplicon are mixed. Here we compare three approaches (spectroscopy, size-restricted spectroscopy, and quantitative binding) for normalization of large, multiplex amplicon pools for performance and efficiency. We found that the quantitative binding approach was superior and represents an efficient scalable process for construction of very large, multiplex pools with hundreds and perhaps thousands of individual amplicons included. We demonstrate the increased sequence diversity identified with higher throughput. Massively parallel sequencing can dramatically accelerate microbial ecology studies by allowing appropriate replication of sequence acquisition to account for temporal and spatial variations. Further, population studies to examine genetic variation, which require even lower levels of sequencing, should be possible where thousands of individual bar-coded amplicons are examined in parallel.


Optik ◽  
2019 ◽  
Vol 185 ◽  
pp. 1036-1044 ◽  
Author(s):  
Chao Peng ◽  
Zezhou Zhang ◽  
Jianxiao Zou ◽  
Wenming Chi

Sign in / Sign up

Export Citation Format

Share Document